chainlit_doc / ingest.py
heyday1234's picture
"Medical Document Assistant APP with LLM RAG framework --YY
8c832a3 verified
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
from langchain_community.vectorstores import FAISS
from langchain_community.llms import HuggingFaceHub
DATA_PATH = 'data/'
DB_FAISS_PATH = 'vectorstore/db_faiss'
# ingest model and create vector database
def create_vector_db():
loader = DirectoryLoader(DATA_PATH,
glob='*.pdf',
loader_cls=PyPDFLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500,
chunk_overlap=50)
texts = text_splitter.split_documents(documents)
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
model_kwargs={'device': 'cpu'})
db = FAISS.from_documents(texts, embeddings)
db.save_local(DB_FAISS_PATH)
return db
if __name__ == "__main__":
create_vector_db()