--- license: mit title: 'Medical Document Assistant APP with LLM RAG framework' sdk: docker emoji: 📚 colorFrom: blue colorTo: red pinned: false short_description: Search medical terms among uploaded document app_port: 8080 --- ## Necessary resources ### Model must be downloaded to local ai_workshop folder: Llama 2 Model (Quantized one by the Bloke): https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/blob/main/llama-2-7b-chat.ggmlv3.q8_0.bin ### License and other reference The code in all scripts subjects to a licence of 96harsh52/LLaMa_2_chatbot (https://github.com/96harsh52/LLaMa_2_chatbot) Youtube instruction (https://www.youtube.com/watch?v=kXuHxI5ZcG0&list=PLrLEqwuz-mRIdQrfeCjeCyFZ-Pl6ffPIN&index=18) Llama 2 HF Model (Original One): https://huggingface.co/meta-llama Chainlit docs: https://github.com/Chainlit/chainlit ## Create virtual Environment 1. Create Virtual env: >`cd ai_workshop` >`python -m venv langchain` 2. Activate virtual evn: >`langchain\Scripts\activate` *NOTE: if you see the read warning in cmd terminal said "running scripts is disabled on this system" , use Powershell to setup API server: 1. open Powershell > `Set-ExecutionPolicy Unrestricted -Scope Process` 2. activate virtual env as previous steps 3. install requirements.txt > `python -m ensurepip --upgrade` > `python -m pip install --upgrade setuptools` > `python -m pip install -r requirements.txt` ## Create local vectors storage database After activate virtual environment, run `python .\ingest.py` ## Setup Medical chatbot server with chainlit After set up the database folder of "vectorstore/db_faiss", run `chainlit run .\model.py > logs.txt`