""" The code in this script subjects to a licence of 96harsh52/LLaMa_2_chatbot (https://github.com/96harsh52/LLaMa_2_chatbot) Youtube instruction (https://www.youtube.com/watch?v=kXuHxI5ZcG0&list=PLrLEqwuz-mRIdQrfeCjeCyFZ-Pl6ffPIN&index=18) Llama 2 Model (Quantized one by the Bloke): https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/blob/main/llama-2-7b-chat.ggmlv3.q8_0.bin Llama 2 HF Model (Original One): https://huggingface.co/meta-llama Chainlit docs: https://github.com/Chainlit/chainlit """ from langchain import PromptTemplate from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain.chains import RetrievalQA from langchain_community.llms import CTransformers import chainlit as cl DB_FAISS_PATH = 'vectorstore/db_faiss' custom_prompt_template = """Use the following pieces of information to answer the user's question. If you don't know the answer, just say that you don't know, don't try to make up an answer. Context: {context} Question: {question} Only return the helpful answer below and nothing else. Helpful answer: """ def set_custom_prompt(): """ Prompt template for QA retrieval for each vectorstore """ prompt = PromptTemplate(template=custom_prompt_template, input_variables=['context', 'question']) return prompt def load_llm(): """ Load the language model """ llm = CTransformers(model='TheBloke/Llama-2-7b-Chat-GGUF', model_file='llama-2-7b-chat.Q8_0.gguf', model_type='llama', max_new_tokens=512, temperature=0.5) return llm def retrieval_qa_chain(llm, prompt, db): """ Create a retrieval QA chain """ qa_chain = RetrievalQA.from_chain_type( llm=llm, chain_type='stuff', retriever=db.as_retriever(search_kwargs={'k': 2}), return_source_documents=True, chain_type_kwargs={'prompt': prompt} ) return qa_chain def qa_bot(): """ Create a QA bot """ embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2', model_kwargs={'device': 'cpu'}) db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True) llm = load_llm() qa_prompt = set_custom_prompt() qa = retrieval_qa_chain(llm, qa_prompt, db) return qa def final_result(query): qa_result = qa_bot() response = qa_result({'query': query}) return response @cl.on_chat_start async def start(): chain = qa_bot() msg = cl.Message(content="Starting the bot...") await msg.send() msg.content = "Hi, Welcome to Medical Chatbot. What is your query?" await msg.update() cl.user_session.set("chain", chain) @cl.on_message async def main(message: cl.Message): chain = cl.user_session.get("chain") cb = cl.AsyncLangchainCallbackHandler( stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"] ) cb.answer_reached = True res = await chain.acall(message.content, callbacks=[cb]) answer = res["result"] sources = res["source_documents"] if sources: answer += f"\nSources:" + str(sources) else: answer += "\nNo sources found" await cl.Message(content=answer).send()