File size: 22,400 Bytes
6aaddef 8700feb 619469d 4831787 8700feb 619469d 8700feb 6d83589 6aaddef fa37ae7 6aaddef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
import gradio as gr
from langchain_community.graphs import Neo4jGraph
import pandas as pd
import json
from ki_gen.planner import build_planner_graph
from ki_gen.utils import clear_memory, init_app, format_df, memory
from ki_gen.prompts import get_initial_prompt
MAX_PROCESSING_STEPS = 10
from neo4j import GraphDatabase
NEO4J_URI = "neo4j+s://4985272f.databases.neo4j.io"
AUTH = ("neo4j", "P6zQScbmyWivYeVZ84BniNjOCxu1D5Akw1IRC1SLKx8")
with GraphDatabase.driver(NEO4J_URI, auth=AUTH) as driver:
driver.verify_connectivity()
print(driver.verify_connectivity())
print("i guess its gut")
def start_inference(data):
"""
Starts plan generation with user_query as input which gets displayed after
"""
config = data[config_state]
init_app(
openai_key=data[openai_api_key],
groq_key=data[groq_api_key],
langsmith_key=data[langsmith_api_key]
)
#TO DO function : clear_memory
#clear_memory(memory, config["configurable"].get("thread_id"))
graph = build_planner_graph(memory, config["configurable"])
with open("images/graph_png.png", "wb") as f:
f.write(graph.get_graph(xray=1).draw_mermaid_png())
print("here !")
for event in graph.stream(get_initial_prompt(config, data[user_query]), config, stream_mode="values"):
if "messages" in event:
event["messages"][-1].pretty_print()
state = graph.get_state(config)
steps = [i for i in range(1,len(state.values['store_plan'])+1)]
df = pd.DataFrame({'Plan steps': steps, 'Description': state.values['store_plan']})
return [df, graph]
def update_display(df):
"""
Displays the df after it has been generated
"""
formatted_html = format_df(df)
return {
plan_display : gr.update(visible=True, value = formatted_html),
select_step_to_modify : gr.update(visible=True, value=0),
enter_new_step : gr.update(visible=True),
submit_new_step : gr.update(visible=True),
continue_inference_btn : gr.update(visible=True)
}
def format_docs(docs: list[dict]):
formatted_results = ""
for i, doc in enumerate(docs):
formatted_results += f"\n### Document {i}\n"
for key in doc:
formatted_results += f"**{key}**: {doc[key]}\n"
return formatted_results
def continue_inference(data):
"""
Proceeds to next plan step
"""
graph = data[graph_state]
config = data[config_state]
for event in graph.stream(None, config, stream_mode="values"):
if "messages" in event:
event["messages"][-1].pretty_print()
snapshot = graph.get_state(config)
print(f"DEBUG INFO : next : {snapshot.next}")
print(f"DEBUG INFO ++ L.75: {snapshot}")
if snapshot.next and snapshot.next[0] == "human_validation":
return {
continue_inference_btn : gr.update(visible=False),
graph_state : graph,
retrieve_more_docs_btn : gr.update(visible=True),
continue_to_processing_btn : gr.update(visible=True),
human_validation_title : gr.update(visible=True, value=f"**{len(snapshot.values['valid_docs'])} documents retrieved.** Retrieve more or continue ?"),
retrieved_docs_state : snapshot.values['valid_docs']
}
return {
plan_result : snapshot.values["messages"][-1].content,
graph_state : graph,
continue_inference_btn : gr.update(visible=False)
}
def continue_to_processing():
"""
Continue to doc processing configuration
"""
return {
retrieve_more_docs_btn : gr.update(visible=False),
continue_to_processing_btn : gr.update(visible=False),
human_validation_title : gr.update(visible=False),
process_data_btn : gr.update(visible=True),
process_steps_nb : gr.update(visible=True),
process_steps_title : gr.update(visible=True)
}
def retrieve_more_docs(data):
"""
Restart doc retrieval
For now we simply regenerate the cypher, it may be different because temperature != 0
"""
graph = data[graph_state]
config = data[config_state]
graph.update_state(config, {'human_validated' : False}, as_node="human_validation")
for event in graph.stream(None, config, stream_mode="values"):
if "messages" in event:
event["messages"][-1].pretty_print()
snapshot = graph.get_state(config)
print(f"DEBUG INFO : next : {snapshot.next}")
print(f"DEBUG INFO ++ L.121: {snapshot}")
return {
graph_state : graph,
human_validation_title : gr.update(visible=True, value=f"**{len(snapshot.values['valid_docs'])} documents retrieved.** Retrieve more or continue ?"),
retrieved_docs_display : format_docs(snapshot.values['valid_docs'])
}
def execute_processing(*args):
"""
Execute doc processing
Args are passed as a list and not a dict for syntax convenience
"""
graph = args[-2]
config = args[-1]
nb_process_steps = args[-3]
process_steps = []
for i in range (nb_process_steps):
if args[i] == "custom":
process_steps.append({"prompt" : args[nb_process_steps + i], "context" : args[2*nb_process_steps + i], "processing_model" : args[3*nb_process_steps + i]})
else:
process_steps.append(args[i])
graph.update_state(config, {'human_validated' : True, 'process_steps' : process_steps}, as_node="human_validation")
for event in graph.stream(None, config, stream_mode="values"):
if "messages" in event:
event["messages"][-1].pretty_print()
snapshot = graph.get_state(config)
print(f"DEBUG INFO : next : {snapshot.next}")
print(f"DEBUG INFO ++ L.153: {snapshot}")
return {
plan_result : snapshot.values["messages"][-1].content,
processed_docs_state : snapshot.values["valid_docs"],
graph_state : graph,
continue_inference_btn : gr.update(visible=True),
process_steps_nb : gr.update(value=0, visible=False),
process_steps_title : gr.update(visible=False),
process_data_btn : gr.update(visible=False),
}
def update_config_display():
"""
Called after loading the config.json file
TODO : allow the user to specify a path to the config file
"""
with open("config.json", "r") as config_file:
config = json.load(config_file)
return {
main_llm : config["main_llm"],
plan_method : config["plan_method"],
use_detailed_query : config["use_detailed_query"],
cypher_gen_method : config["cypher_gen_method"],
validate_cypher : config["validate_cypher"],
summarization_model : config["summarize_model"],
eval_method : config["eval_method"],
eval_threshold : config["eval_threshold"],
max_docs : config["max_docs"],
compression_method : config["compression_method"],
compress_rate : config["compress_rate"],
force_tokens : config["force_tokens"],
eval_model : config["eval_model"],
srv_addr : config["graph"]["address"],
srv_usr : config["graph"]["username"],
srv_pwd : config["graph"]["password"],
openai_api_key : config["openai_api_key"],
groq_api_key : config["groq_api_key"],
langsmith_api_key : config["langsmith_api_key"]
}
def build_config(data):
"""
Build the config variable using the values inputted by the user
"""
config = {}
config["main_llm"] = data[main_llm]
config["plan_method"] = data[plan_method]
config["use_detailed_query"] = data[use_detailed_query]
config["cypher_gen_method"] = data[cypher_gen_method]
config["validate_cypher"] = data[validate_cypher]
config["summarize_model"] = data[summarization_model]
config["eval_method"] = data[eval_method]
config["eval_threshold"] = data[eval_threshold]
config["max_docs"] = data[max_docs]
config["compression_method"] = data[compression_method]
config["compress_rate"] = data[compress_rate]
config["force_tokens"] = data[force_tokens]
config["eval_model"] = data[eval_model]
config["thread_id"] = "3"
try:
neograph = Neo4jGraph(url=data[srv_addr], username=data[srv_usr], password=data[srv_pwd])
config["graph"] = neograph
except Exception as e:
raise gr.Error(f"Error when configuring the neograph server : {e}", duration=5)
gr.Info("Succesfully updated configuration !", duration=5)
return {"configurable" : config}
with gr.Blocks() as demo:
with gr.Tab("Config"):
### The config tab
gr.Markdown("## Config options setup")
gr.Markdown("### API Keys")
with gr.Row():
openai_api_key = gr.Textbox(
label="OpenAI API Key",
type="password"
)
groq_api_key = gr.Textbox(
label="Groq API Key",
type='password'
)
langsmith_api_key = gr.Textbox(
label="LangSmith API Key",
type="password"
)
gr.Markdown('### Planner options')
with gr.Row():
main_llm = gr.Dropdown(
choices=["gpt-4o", "claude-3-5-sonnet", "mixtral-8x7b-32768"],
label="Main LLM",
info="Choose the LLM which will perform the generation",
value="gpt-4o"
)
with gr.Column(scale=1, min_width=600):
plan_method = gr.Dropdown(
choices=["generation", "modification"],
label="Planning method",
info="Choose how the main LLM will generate its plan",
value="modification"
)
use_detailed_query = gr.Checkbox(
label="Detail each plan step",
info="Detail each plan step before passing it for data query"
)
gr.Markdown("### Data query options")
# The options for the data processor
# TODO : remove the options for summarize and compress and let the user choose them when specifying processing steps
# (similarly to what is done for custom processing step)
with gr.Row():
with gr.Column(scale=1, min_width=300):
# Neo4j Server parameters
srv_addr = gr.Textbox(
label="Neo4j server address",
placeholder="localhost:7687"
)
srv_usr = gr.Textbox(
label="Neo4j username",
placeholder="neo4j"
)
srv_pwd = gr.Textbox(
label="Neo4j password",
placeholder="<Password>"
)
with gr.Column(scale=1, min_width=300):
cypher_gen_method = gr.Dropdown(
choices=["auto", "guided"],
label="Cypher generation method",
)
validate_cypher = gr.Checkbox(
label="Validate cypher using graph Schema"
)
summarization_model = gr.Dropdown(
choices=["gpt-4o", "claude-3-5-sonnet", "mixtral-8x7b-32768", "llama3-70b-8192"],
label="Summarization LLM",
info="Choose the LLM which will perform the summaries"
)
with gr.Column(scale=1, min_width=300):
eval_method = gr.Dropdown(
choices=["binary", "score"],
label="Retrieved docs evaluation method",
info="Evaluation method of retrieved docs"
)
eval_model = gr.Dropdown(
choices = ["gpt-4o", "mixtral-8x7b-32768"],
label = "Evaluation model",
info = "The LLM to use to evaluate the relevance of retrieved docs",
value = "mixtral-8x7b-32768"
)
eval_threshold = gr.Slider(
minimum=0,
maximum=1,
value=0.7,
label="Eval threshold",
info="Score above which a doc is considered relevant",
step=0.01,
visible=False
)
def eval_method_changed(selection):
if selection == "score":
return gr.update(visible=True)
return gr.update(visible=False)
eval_method.change(eval_method_changed, inputs=eval_method, outputs=eval_threshold)
max_docs= gr.Slider(
minimum=0,
maximum = 30,
value = 15,
label="Max docs",
info="Maximum number of docs to be retrieved at each query",
step=0.01
)
with gr.Column(scale=1, min_width=300):
compression_method = gr.Dropdown(
choices=["llm_lingua2", "llm_lingua"],
label="Compression method",
value="llm_lingua2"
)
with gr.Row():
# Add compression rate configuration with a gr.slider
compress_rate = gr.Slider(
minimum = 0,
maximum = 1,
value = 0.33,
label="Compression rate",
info="Compression rate",
step = 0.01
)
# Add gr.CheckboxGroup to choose force_tokens
force_tokens = gr.CheckboxGroup(
choices=['\n', '?', '.', '!', ','],
value=[],
label="Force tokens",
info="Tokens to keep during compression",
)
with gr.Row():
btn_update_config = gr.Button(value="Update config")
load_config_json = gr.Button(value="Load config from JSON")
with gr.Row():
debug_info = gr.Button(value="Print debug info")
config_state = gr.State(value={})
btn_update_config.click(
build_config,
inputs={main_llm, plan_method, use_detailed_query, srv_addr, srv_pwd, srv_usr, compression_method, eval_model, \
compress_rate, force_tokens, cypher_gen_method, validate_cypher, summarization_model, eval_method, eval_threshold, max_docs},
outputs=config_state
)
load_config_json.click(
update_config_display,
outputs={main_llm, plan_method, use_detailed_query, cypher_gen_method, validate_cypher, summarization_model, eval_method, eval_threshold, \
max_docs, compress_rate, compression_method, force_tokens, eval_model, srv_addr, srv_usr, srv_pwd, openai_api_key, langsmith_api_key, groq_api_key}
).then(
build_config,
inputs={main_llm, plan_method, use_detailed_query, srv_addr, srv_pwd, srv_usr, compression_method, eval_model, \
compress_rate, force_tokens, cypher_gen_method, validate_cypher, summarization_model, eval_method, eval_threshold, max_docs},
outputs=config_state
)
# Print config variable in the terminal
debug_info.click(lambda x : print(x), inputs=config_state)
with gr.Tab("Inference"):
### Inference tab
graph_state = gr.State()
user_query = gr.Textbox(label = "Your query")
launch_inference = gr.Button(value="Generate plan")
with gr.Row():
dataframe_plan = gr.Dataframe(visible = False)
plan_display = gr.HTML(visible = False, label="Generated plan")
with gr.Column():
# Lets the user modify steps of the plan. Underlying logic not implemented yet
# TODO : implement this
with gr.Row():
select_step_to_modify = gr.Number(visible= False, label="Select a plan step to modify", value=0)
submit_new_step = gr.Button(visible = False, value="Submit new step")
enter_new_step = gr.Textbox(visible=False, label="Modify the plan step")
with gr.Row():
human_validation_title = gr.Markdown(visible=False)
retrieve_more_docs_btn = gr.Button(value="Retrieve more docs", visible=False)
continue_to_processing_btn = gr.Button(value="Proceed to data processing", visible=False)
with gr.Row():
with gr.Column():
process_steps_title = gr.Markdown("#### Data processing steps", visible=False)
process_steps_nb = gr.Number(label="Number of processing steps", value = 0, precision=0, step = 1, visible=False)
def get_process_step_names():
return ["summarize", "compress", "custom"]
# The gr.render decorator allows the code inside the following function to be rerun everytime the 'inputs' variable is modified
# /!\ All event listeners that use variables defined inside a gr.render function must be defined inside that same function
# ref : https://www.gradio.app/docs/gradio/render
@gr.render(inputs=process_steps_nb)
def processing(nb):
with gr.Row():
process_step_names = get_process_step_names()
dropdowns = []
textboxes = []
usable_elements = []
processing_models = []
for i in range(nb):
with gr.Column():
dropdown = gr.Dropdown(key = f"d{i}", choices=process_step_names, label=f"Data processing step {i+1}")
dropdowns.append(dropdown)
textbox = gr.Textbox(
key = f"t{i}",
value="",
placeholder="Your custom prompt",
visible=True, min_width=300)
textboxes.append(textbox)
usable_element = gr.Dropdown(
key = f"u{i}",
choices = [(j) for j in range(i+1)],
label="Elements passed to the LLM for this process step",
multiselect=True,
)
usable_elements.append(usable_element)
processing_model = gr.Dropdown(
key = f"m{i}",
label="The LLM that will execute this step",
visible=True,
choices=["gpt-4o", "mixtral-8x7b-32768", "llama3-70b-8182"]
)
processing_models.append(processing_model)
dropdown.change(
fn=lambda process_name : [gr.update(visible=(process_name=="custom")), gr.update(visible=(process_name=='custom')), gr.update(visible=(process_name=='custom'))],
inputs=dropdown,
outputs=[textbox, usable_element, processing_model]
)
process_data_btn.click(
execute_processing,
inputs= dropdowns + textboxes + usable_elements + processing_models + [process_steps_nb, graph_state, config_state],
outputs={plan_result, processed_docs_state, graph_state, continue_inference_btn, process_steps_nb, process_steps_title, process_data_btn}
)
process_data_btn = gr.Button(value="Process retrieved docs", visible=False)
continue_inference_btn = gr.Button(value="Proceed to next plan step", visible=False)
plan_result = gr.Markdown(visible = True, label="Result of last plan step")
with gr.Tab("Retrieved Docs"):
retrieved_docs_state = gr.State([])
with gr.Row():
gr.Markdown("# Retrieved Docs")
retrieved_docs_btn = gr.Button("Display retrieved docs")
retrieved_docs_display = gr.Markdown()
processed_docs_state = gr.State([])
with gr.Row():
gr.Markdown("# Processed Docs")
processed_docs_btn = gr.Button("Display processed docs")
processed_docs_display = gr.Markdown()
continue_inference_btn.click(
continue_inference,
inputs={graph_state, config_state},
outputs={continue_inference_btn, graph_state, retrieve_more_docs_btn, continue_to_processing_btn, human_validation_title, plan_result, retrieved_docs_state}
)
launch_inference.click(
start_inference,
inputs={config_state, user_query, openai_api_key, groq_api_key, langsmith_api_key},
outputs=[dataframe_plan, graph_state]
).then(
update_display,
inputs=dataframe_plan,
outputs={plan_display, select_step_to_modify, enter_new_step, submit_new_step, continue_inference_btn}
)
retrieve_more_docs_btn.click(
retrieve_more_docs,
inputs={graph_state, config_state},
outputs={graph_state, human_validation_title, retrieved_docs_display}
)
continue_to_processing_btn.click(
continue_to_processing,
outputs={retrieve_more_docs_btn, continue_to_processing_btn, human_validation_title, process_data_btn, process_steps_nb, process_steps_title}
)
retrieved_docs_btn.click(
fn=lambda docs : format_docs(docs),
inputs=retrieved_docs_state,
outputs=retrieved_docs_display
)
processed_docs_btn.click(
fn=lambda docs : format_docs(docs),
inputs=processed_docs_state,
outputs=processed_docs_display
)
test_process_steps = gr.Button(value="Test process steps")
test_process_steps.click(
lambda : [gr.update(visible = True), gr.update(visible=True)],
outputs=[process_steps_nb, process_steps_title]
)
demo.launch()
|