File size: 12,049 Bytes
6aaddef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import gradio as gr
from vectorstore import FAISSVectorStore
from langchain_community.graphs import Neo4jGraph
import os
import json
import html
import pandas as pd
import time
time.sleep(30)
os.environ["http_proxy"] = "185.46.212.98:80"
os.environ["https_proxy"] = "185.46.212.98:80"
os.environ["NO_PROXY"] = "localhost"
neo4j_graph = Neo4jGraph(
url=os.getenv("NEO4J_URI", "bolt://localhost:7999"),
username=os.getenv("NEO4J_USERNAME", "neo4j"),
password=os.getenv("NEO4J_PASSWORD", "graph_test")
)
# Requires ~1GB RAM
vector_store = FAISSVectorStore(model_name='Alibaba-NLP/gte-large-en-v1.5', dimension=1024, trust_remote_code=True, embedding_file="/usr/src/app/doc_explorer/embeddings_full.npy")
# Get document types from Neo4j database
def get_document_types():
query = """
MATCH (n)
RETURN DISTINCT labels(n) AS document_type
"""
result = neo4j_graph.query(query)
return [row["document_type"][0] for row in result]
def search(query, doc_types, use_mmr, lambda_param, top_k):
results, node_ids = vector_store.similarity_search(
query,
k=top_k,
use_mmr=use_mmr,
lambda_param=lambda_param if use_mmr else None,
doc_types=doc_types,
neo4j_graph=neo4j_graph
)
formatted_results = []
formatted_choices = []
for i, result in enumerate(results):
formatted_results.append(f"{i}. {result['document']} (Score: {result['score']:.4f})")
formatted_choices.append(f"{i}. {str(result['document'])[:100]} (Score: {result['score']:.4f})")
return formatted_results, gr.update(choices=formatted_choices, value=[]), node_ids
def get_docs_from_ids(graph_data : dict):
node_ids = [node["id"] for node in graph_data["nodes"]]
print(node_ids)
query = """
MATCH (n)
WHERE n.id IN $node_ids
RETURN n.id AS id, n AS doc, labels(n) AS category
"""
return neo4j_graph.query(query, {"node_ids" : node_ids}), graph_data["edges"]
def get_neighbors_and_graph_data(selected_documents, node_ids, graph_data):
if not selected_documents:
return "No documents selected.", json.dumps(graph_data), graph_data
selected_indices = [int(doc.split('.')[0]) - 1 for doc in selected_documents]
selected_node_ids = [node_ids[i] for i in selected_indices]
query = """
MATCH (n)-[r]-(neighbor)
WHERE n.id IN $node_ids
RETURN n.id AS source_id, n AS source_text, labels(n) AS source_type,
neighbor.id AS neighbor_id, neighbor AS neighbor_text,
labels(neighbor) AS neighbor_type, type(r) AS relationship_type
"""
results = neo4j_graph.query(query, {"node_ids": selected_node_ids})
if not results:
return "No neighbors found for the selected documents.", "[]"
neighbor_info = {}
node_set = set([node["id"] for node in graph_data["nodes"]])
for row in results:
source_id = row['source_id']
if source_id not in neighbor_info:
neighbor_info[source_id] = {
'source_type': row["source_type"][0],
'source_text': row['source_text'],
'neighbors': []
}
if source_id not in node_set:
graph_data["nodes"].append({
"id": source_id,
"label": str(row['source_text'])[:30] + "...",
"group": row['source_type'][0],
"title": f"<div class='node-tooltip'><h3>{row['source_type'][0]}</h3><p>{row['source_text']}</p></div>",
})
node_set.add(source_id)
neighbor_info[source_id]['neighbors'].append(
f"[{row['relationship_type']}] [{row['neighbor_type'][0]}] {str(row['neighbor_text'])[:200]}"
)
if row['neighbor_id'] not in node_set:
graph_data["nodes"].append({
"id": row['neighbor_id'],
"label": str(row['neighbor_text'])[:30] + "...",
"group": row['neighbor_type'][0],
"title": f"<div class='node-tooltip'><h3>{row['neighbor_type'][0]}</h3><p>{html.escape(str(row['neighbor_text']))}</p></div>",
})
node_set.add(row['neighbor_id'])
edge = {
"from": source_id,
"to" : row['neighbor_id'],
"label": row['relationship_type']
}
if edge not in graph_data['edges']:
graph_data['edges'].append(edge)
output = []
for source_id, info in neighbor_info.items():
output.append(f"Neighbors for: [{info['source_type']}] {str(info['source_text'])[:100]}")
output.extend(info['neighbors'])
output.append("\n\n") # Empty line for separation
formatted_choices = []
node_ids = []
for i, node in enumerate(graph_data['nodes']):
formatted_choices.append(f"{i+1}. {str(node['label'])})")
node_ids.append(node['id'])
return "\n".join(output), json.dumps(graph_data), graph_data, gr.update(choices=formatted_choices, value=[]), node_ids
def save_docs_to_excel(exported_docs : list[dict], exported_relationships : list[dict]):
cleaned_docs = [dict(doc['doc'], **{'id': doc['id'], 'category': doc['category'][0], "relationships" : ""}) for doc in exported_docs]
for relationship in exported_relationships:
for doc in cleaned_docs:
if doc['id'] == relationship['from']:
doc["relationships"] += f"[{relationship['label']}] {relationship['to']}\n"
df = pd.DataFrame(cleaned_docs)
df.to_excel("doc_explorer/exported_docs/docs.xlsx")
return gr.update(value="doc_explorer/exported_docs/docs.xlsx", visible=True)
# JavaScript code for graph visualization
js_code = """
function(graph_data_str) {
if (!graph_data_str) return;
const container = document.getElementById('graph-container');
container.innerHTML = '';
let data;
try {
data = JSON.parse(graph_data_str);
} catch (error) {
console.error("Failed to parse graph data:", error);
container.innerHTML = "Error: Failed to load graph data.";
return;
}
data.nodes.forEach(node => {
const div = document.createElement('div');
div.innerHTML = node.title;
node.title = div.firstChild;
});
const nodes = new vis.DataSet(data.nodes);
const edges = new vis.DataSet(data.edges);
const options = {
nodes: {
shape: 'dot',
size: 16,
font: {
size: 12,
color: '#000000'
},
borderWidth: 2
},
edges: {
width: 1,
font: {
size: 10,
align: 'middle'
},
color: { color: '#7A7A7A', hover: '#2B7CE9' }
},
physics: {
forceAtlas2Based: {
gravitationalConstant: -26,
centralGravity: 0.005,
springLength: 230,
springConstant: 0.18
},
maxVelocity: 146,
solver: 'forceAtlas2Based',
timestep: 0.35,
stabilization: { iterations: 150 }
},
interaction: {
hover: true,
tooltipDelay: 200
}
};
const network = new vis.Network(container, { nodes: nodes, edges: edges }, options);
}
"""
head = """
<script type="text/javascript" src="https://unpkg.com/vis-network/standalone/umd/vis-network.min.js"></script>
<link href="https://unpkg.com/vis-network/styles/vis-network.min.css" rel="stylesheet" type="text/css" />
"""
custom_css = """
#graph-container {
border: 1px solid #ddd;
border-radius: 4px;
}
.vis-tooltip {
font-family: Arial, sans-serif;
padding: 10px;
border-radius: 4px;
background-color: rgba(255, 255, 255, 0.9);
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
max-width: 300px;
color: #333;
word-wrap: break-word;
overflow-wrap: break-word;
}
.node-tooltip {
width: 100%;
}
.node-tooltip h3 {
margin: 0 0 5px 0;
font-size: 14px;
color: #333;
}
.node-tooltip p {
margin: 0;
font-size: 12px;
color: #666;
white-space: normal;
}
"""
with gr.Blocks(head=head, css=custom_css) as demo:
with gr.Tab("Search"):
gr.Markdown("# Document Search Engine")
gr.Markdown("Enter a query to search for similar documents. You can filter by document type and use MMR for diverse results.")
with gr.Row():
with gr.Column(scale=3):
query_input = gr.Textbox(label="Enter your query")
doc_type_input = gr.Dropdown(choices=get_document_types(), label="Select document type", multiselect=True)
with gr.Column(scale=2):
mmr_input = gr.Checkbox(label="Use MMR for diverse results")
lambda_input = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.5, label="Lambda parameter (MMR diversity)", visible=False)
top_k_input = gr.Slider(minimum=1, maximum=20, step=1, value=5, label="Number of results")
search_button = gr.Button("Search")
results_output = gr.Textbox(label="Search Results")
selected_documents = gr.Dropdown(label="Select documents to view their neighbors", choices=[], multiselect=True, interactive=True)
with gr.Row():
neighbor_search_button = gr.Button("Find Neighbors")
send_to_export = gr.Button("Send docs to export Tab")
neighbors_output = gr.Textbox(label="Document Neighbors")
graph_data_state = gr.State({"nodes": [], "edges": []})
graph_data_str = gr.Textbox(visible=False)
graph_container = gr.HTML('<div id="graph-container" style="height: 600px;"> Hey ! </div>')
node_ids = gr.State([])
exported_docs = gr.State([])
exported_relationships = gr.State([])
def update_lambda_visibility(use_mmr):
return gr.update(visible=use_mmr)
mmr_input.change(fn=update_lambda_visibility, inputs=mmr_input, outputs=lambda_input)
search_button.click(
fn=search,
inputs=[query_input, doc_type_input, mmr_input, lambda_input, top_k_input],
outputs=[results_output, selected_documents, node_ids]
)
neighbor_search_button.click(
fn=get_neighbors_and_graph_data,
inputs=[selected_documents, node_ids, graph_data_state],
outputs=[neighbors_output, graph_data_str, graph_data_state, selected_documents, node_ids]
).then(
fn=None,
inputs=graph_data_str,
outputs=None,
js=js_code,
)
send_to_export.click(
fn=get_docs_from_ids,
inputs=graph_data_state,
outputs=[exported_docs, exported_relationships]
)
# gr.Examples(
# examples=[
# ["What is machine learning?", "Article", True, 0.5, 5],
# ["How to implement a neural network?", "Tutorial", False, 0.5, 3],
# ["Latest advancements in NLP", "Research Paper", True, 0.7, 10]
# ],
# inputs=[query_input, doc_type_input, mmr_input, lambda_input, top_k_input]
# )
with gr.Tab("Export"):
with gr.Row():
exported_docs_btn = gr.Button("Display exported docs")
exported_excel_btn = gr.Button("Export to excel")
exported_excel = gr.File(visible=False)
exported_docs_display = gr.Markdown(visible=False)
exported_docs_btn.click(
fn= lambda docs: gr.update(value='\n\n'.join([f"[{doc['category'][0]}]\n{doc['doc']}\n\n" for doc in docs]), visible=True),
inputs=exported_docs,
outputs=exported_docs_display
)
exported_excel_btn.click(
fn=save_docs_to_excel,
inputs=[exported_docs, exported_relationships],
outputs=exported_excel
)
demo.launch()
|