File size: 6,273 Bytes
6aaddef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import faiss
import numpy as np
from sentence_transformers import SentenceTransformer
from typing import List, Optional, Tuple
from langchain_community.graphs import Neo4jGraph
import pickle

class FAISSVectorStore:
    def __init__(self, model_name: str = None, dimension: int = 384, embedding_file: str = None, trust_remote_code = False):
        self.model = SentenceTransformer(model_name, trust_remote_code=trust_remote_code) if model_name is not None else None
        self.index = faiss.IndexFlatIP(dimension)
        self.dimension = dimension
        if embedding_file:
            self.load_embeddings(embedding_file)

    def load_embeddings(self, file_path: str):
        if file_path.endswith('.pkl'):
            with open(file_path, 'rb') as f:
                embeddings = pickle.load(f)
        elif file_path.endswith('.npy'):
            embeddings = np.load(file_path)
        else:
            raise ValueError("Unsupported file format. Use .pkl or .npy")
        
        self.add_embeddings(embeddings)

    def add_embeddings(self, embeddings: np.ndarray):
        faiss.normalize_L2(embeddings)
        self.index.add(embeddings)

    def similarity_search(self, query: str, k: int = 5, use_mmr: bool = False, lambda_param: float = 0.5, doc_types: list[str] = None, neo4j_graph: Neo4jGraph = None):
        query_vector = self.model.encode([query])
        faiss.normalize_L2(query_vector)
        
        if use_mmr:
            return self._mmr_search(query_vector, k, lambda_param, neo4j_graph, doc_types)
        else:
            return self._simple_search(query_vector, k, neo4j_graph, doc_types)

    def _simple_search(self, query_vector: np.ndarray, k: int, neo4j_graph: Neo4jGraph, doc_types : list[str] = None) -> List[dict]:
        distances, indices = self.index.search(query_vector, k)
        
        results = []
        results_idx = []
        for i, idx in enumerate(indices[0]):
            document = self._get_text_by_index(neo4j_graph, idx, doc_types)
            if document is not None:
                results.append({
                    'document': document,
                    'score': distances[0][i]
                })
                results_idx.append(idx)
        
        return results, results_idx

    def _mmr_search(self, query_vector: np.ndarray, k: int, lambda_param: float, neo4j_graph: Neo4jGraph, doc_types: list[str] = None) -> Tuple[List[dict], List[int]]:
        initial_k = min(k * 2, self.index.ntotal)
        distances, indices = self.index.search(query_vector, initial_k)
        
        # Reconstruct embeddings for the initial results
        initial_embeddings = self._reconstruct_embeddings(indices[0])
        
        selected_indices = []
        unselected_indices = list(range(len(indices[0])))
        
        for _ in range(min(k, len(indices[0]))):
            mmr_scores = []
            for i in unselected_indices:
                if not selected_indices:
                    mmr_scores.append((i, distances[0][i]))
                else:
                    embedding_i = initial_embeddings[i]
                    redundancy = max(self._cosine_similarity(embedding_i, initial_embeddings[j]) for j in selected_indices)
                    mmr_scores.append((i, lambda_param * distances[0][i] - (1 - lambda_param) * redundancy))
            
            selected_idx = max(mmr_scores, key=lambda x: x[1])[0]
            selected_indices.append(selected_idx)
            unselected_indices.remove(selected_idx)
        
        results = []
        results_idx = []
        for idx in selected_indices:
            document = self._get_text_by_index(neo4j_graph, indices[0][idx], doc_types)
            if document is not None:
                results.append({
                    'document': document,
                    'score': distances[0][idx]
                })
                results_idx.append(idx)
        
        return results, results_idx

    def _reconstruct_embeddings(self, indices: np.ndarray) -> np.ndarray:
        return self.index.reconstruct_batch(indices)

    def _cosine_similarity(self, a: np.ndarray, b: np.ndarray) -> float:
        return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
    
    def _get_text_by_index(self, neo4j_graph, index, doc_types):
        if doc_types is None:
            query = f"""
            MATCH (n)
            WHERE n.id = $index
            RETURN n AS document, labels(n) AS document_type, n.id AS node_id
            """
            result = neo4j_graph.query(query, {"index": index})
        else:
            for doc_type in doc_types:
                query = f"""
                MATCH (n:{doc_type})
                WHERE n.id = $index
                RETURN n AS document, labels(n) AS document_type, n.id AS node_id
                """
                result = neo4j_graph.query(query, {"index": index})
                if result:
                    break

        if result:
            return f"[{result[0]['document_type'][0]}] {result[0]['document']}"
        return None


# Example usage
if __name__ == "__main__":
    # Initialize the vector store with embedding file
    vector_store = FAISSVectorStore(dimension=384, embedding_file="path/to/your/embeddings.pkl")  # or .npy file

    # Initialize Neo4jGraph (replace with your actual Neo4j connection details)
    neo4j_graph = Neo4jGraph(
        url="bolt://localhost:7687",
        username="neo4j",
        password="password"
    )

    # Perform a similarity search with and without MMR
    query = "How to start a long journey"
    results_simple = vector_store.similarity_search(query, k=5, use_mmr=False, neo4j_graph=neo4j_graph)
    results_mmr = vector_store.similarity_search(query, k=5, use_mmr=True, lambda_param=0.5, neo4j_graph=neo4j_graph)

    # Print the results
    print(f"Top 5 similar texts for query: '{query}' (without MMR)")
    for i, result in enumerate(results_simple, 1):
        print(f"{i}. Text: {result['text']}")
        print(f"   Score: {result['score']}")
        print()

    print(f"Top 5 similar texts for query: '{query}' (with MMR)")
    for i, result in enumerate(results_mmr, 1):
        print(f"{i}. Text: {result['text']}")
        print(f"   Score: {result['score']}")
        print()