File size: 10,047 Bytes
6aaddef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import os
import re
from typing import Annotated
from typing_extensions import TypedDict
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_community.graphs import Neo4jGraph
from langgraph.graph import StateGraph
from langgraph.graph import add_messages
from ki_gen.prompts import PLAN_GEN_PROMPT, PLAN_MODIFICATION_PROMPT
from ki_gen.data_retriever import build_data_retriever_graph
from ki_gen.data_processor import build_data_processor_graph
from ki_gen.utils import ConfigSchema, State, HumanValidationState, DocProcessorState, DocRetrieverState
##########################################################################
###### NODES DEFINITION ######
##########################################################################
def validate_node(state: State):
"""
This node inserts the plan validation prompt.
"""
prompt = """System : You only need to focus on Key Issues, no need to focus on solutions or stakeholders yet and your plan should be concise.
If needed, give me an updated plan to follow this instruction. If your plan already follows the instruction just say "My plan is correct"."""
output = HumanMessage(content=prompt)
return {"messages" : [output]}
# Wrappers to call LLMs on the state messsages field
def chatbot_llama(state: State):
llm_llama = ChatGroq(model="llama3-70b-8192")
return {"messages" : [llm_llama.invoke(state["messages"])]}
def chatbot_mixtral(state: State):
llm_mixtral = ChatGroq(model="mixtral-8x7b-32768")
return {"messages" : [llm_mixtral.invoke(state["messages"])]}
def chatbot_openai(state: State):
llm_openai = ChatOpenAI(model='gpt-4o', base_url="https://llm.synapse.thalescloud.io/")
return {"messages" : [llm_openai.invoke(state["messages"])]}
chatbots = {"gpt-4o" : chatbot_openai,
"mixtral-8x7b-32768" : chatbot_mixtral,
"llama3-70b-8192" : chatbot_llama
}
def parse_plan(state: State):
"""
This node parses the generated plan and writes in the 'store_plan' field of the state
"""
plan = state["messages"][-3].content
store_plan = re.split("\d\.", plan.split("Plan:\n")[1])[1:]
try:
store_plan[len(store_plan) - 1] = store_plan[len(store_plan) - 1].split("<END_OF_PLAN>")[0]
except Exception as e:
print(f"Error while removing <END_OF_PLAN> : {e}")
return {"store_plan" : store_plan}
def detail_step(state: State, config: ConfigSchema):
"""
This node updates the value of the 'current_plan_step' field and defines the query to be used for the data_retriever.
"""
print("test")
print(state)
if 'current_plan_step' in state.keys():
print("all good chief")
else:
state["current_plan_step"] = None
current_plan_step = state["current_plan_step"] + 1 if state["current_plan_step"] is not None else 0 # We just began a new step so we will increase current_plan_step at the end
if config["configurable"].get("use_detailed_query"):
prompt = HumanMessage(f"""Specify what additional information you need to proceed with the next step of your plan :
Step {current_plan_step + 1} : {state['store_plan'][current_plan_step]}""")
query = get_detailed_query(context = state["messages"] + [prompt], model=config["configurable"].get("main_llm"))
return {"messages" : [prompt, query], "current_plan_step": current_plan_step, 'query' : query}
return {"current_plan_step": current_plan_step, 'query' : state["store_plan"][current_plan_step], "valid_docs" : []}
def get_detailed_query(context : list, model : str = "mixtral-8x7b-32768"):
"""
Simple helper function for the detail_step node
"""
if model == 'gpt-4o':
llm = ChatOpenAI(model=model, base_url="https://llm.synapse.thalescloud.io/")
else:
llm = ChatGroq(model=model)
return llm.invoke(context)
def concatenate_data(state: State):
"""
This node concatenates all the data that was processed by the data_processor and inserts it in the state's messages
"""
prompt = f"""#########TECHNICAL INFORMATION ############
{str(state["valid_docs"])}
########END OF TECHNICAL INFORMATION#######
Using the information provided above, proceed with step {state['current_plan_step'] + 1} of your plan :
{state['store_plan'][state['current_plan_step']]}
"""
return {"messages": [HumanMessage(content=prompt)]}
def human_validation(state: HumanValidationState) -> HumanValidationState:
"""
Dummy node to interrupt before
"""
return {'process_steps' : []}
def generate_ki(state: State):
"""
This node inserts the prompt to begin Key Issues generation
"""
print(f"THIS IS THE STATE FOR CURRENT PLAN STEP IN GENERATE_KI : {state}")
prompt = f"""Using the information provided above, proceed with step 4 of your plan to provide the user with NEW and INNOVATIVE Key Issues :
{state['store_plan'][state['current_plan_step'] + 1]}"""
return {"messages" : [HumanMessage(content=prompt)]}
def detail_ki(state: State):
"""
This node inserts the last prompt to detail the generated Key Issues
"""
prompt = f"""Using the information provided above, proceed with step 5 of your plan to provide the user with NEW and INNOVATIVE Key Issues :
{state['store_plan'][state['current_plan_step'] + 2]}"""
return {"messages" : [HumanMessage(content=prompt)]}
##########################################################################
###### CONDITIONAL EDGE FUNCTIONS ######
##########################################################################
def validate_plan(state: State):
"""
Whether to regenerate the plan or to parse it
"""
if "messages" in state and state["messages"][-1].content in ["My plan is correct.","My plan is correct"]:
return "parse"
return "validate"
def next_plan_step(state: State, config: ConfigSchema):
"""
Proceed to next plan step (either generate KI or retrieve more data)
"""
if (state["current_plan_step"] == 2) and (config["configurable"].get('plan_method') == "modification"):
return "generate_key_issues"
if state["current_plan_step"] == len(state["store_plan"]) - 1:
return "generate_key_issues"
else:
return "detail_step"
def detail_or_data_retriever(state: State, config: ConfigSchema):
"""
Detail the query to use for data retrieval or not
"""
if config["configurable"].get("use_detailed_query"):
return "chatbot_detail"
else:
return "data_retriever"
def retrieve_or_process(state: State):
"""
Process the retrieved docs or keep retrieving
"""
if state['human_validated']:
return "process"
return "retrieve"
# while True:
# user_input = input(f"{len(state['valid_docs'])} were retreived. Do you want more documents (y/[n]) : ")
# if user_input.lower() == "y":
# return "retrieve"
# if not user_input or user_input.lower() == "n":
# return "process"
# print("Please answer with 'y' or 'n'.\n")
def build_planner_graph(memory, config):
"""
Builds the planner graph
"""
graph_builder = StateGraph(State)
graph_doc_retriever = build_data_retriever_graph(memory)
graph_doc_processor = build_data_processor_graph(memory)
graph_builder.add_node("chatbot_planner", chatbots[config["main_llm"]])
graph_builder.add_node("validate", validate_node)
graph_builder.add_node("chatbot_detail", chatbot_llama)
graph_builder.add_node("parse", parse_plan)
graph_builder.add_node("detail_step", detail_step)
graph_builder.add_node("data_retriever", graph_doc_retriever, input=DocRetrieverState)
graph_builder.add_node("human_validation", human_validation)
graph_builder.add_node("data_processor", graph_doc_processor, input=DocProcessorState)
graph_builder.add_node("concatenate_data", concatenate_data)
graph_builder.add_node("chatbot_exec_step", chatbots[config["main_llm"]])
graph_builder.add_node("generate_ki", generate_ki)
graph_builder.add_node("chatbot_ki", chatbots[config["main_llm"]])
graph_builder.add_node("detail_ki", detail_ki)
graph_builder.add_node("chatbot_final", chatbots[config["main_llm"]])
graph_builder.add_edge("validate", "chatbot_planner")
graph_builder.add_edge("parse", "detail_step")
# graph_builder.add_edge("detail_step", "chatbot2")
graph_builder.add_edge("chatbot_detail", "data_retriever")
graph_builder.add_edge("data_retriever", "human_validation")
graph_builder.add_edge("data_processor", "concatenate_data")
graph_builder.add_edge("concatenate_data", "chatbot_exec_step")
graph_builder.add_edge("generate_ki", "chatbot_ki")
graph_builder.add_edge("chatbot_ki", "detail_ki")
graph_builder.add_edge("detail_ki", "chatbot_final")
graph_builder.add_edge("chatbot_final", "__end__")
graph_builder.add_conditional_edges(
"detail_step",
detail_or_data_retriever,
{"chatbot_detail": "chatbot_detail", "data_retriever": "data_retriever"}
)
graph_builder.add_conditional_edges(
"human_validation",
retrieve_or_process,
{"retrieve" : "data_retriever", "process" : "data_processor"}
)
graph_builder.add_conditional_edges(
"chatbot_planner",
validate_plan,
{"parse" : "parse", "validate": "validate"}
)
graph_builder.add_conditional_edges(
"chatbot_exec_step",
next_plan_step,
{"generate_key_issues" : "generate_ki", "detail_step": "detail_step"}
)
graph_builder.set_entry_point("chatbot_planner")
graph = graph_builder.compile(
checkpointer=memory,
interrupt_after=["parse", "chatbot_exec_step", "chatbot_final", "data_retriever"],
)
return graph |