import os import re from typing import Annotated from typing_extensions import TypedDict from langchain_groq import ChatGroq from langchain_openai import ChatOpenAI from langchain_core.messages import SystemMessage, HumanMessage from langchain_community.graphs import Neo4jGraph from langgraph.graph import StateGraph from langgraph.graph import add_messages from ki_gen.prompts import PLAN_GEN_PROMPT, PLAN_MODIFICATION_PROMPT from ki_gen.data_retriever import build_data_retriever_graph from ki_gen.data_processor import build_data_processor_graph from ki_gen.utils import ConfigSchema, State, HumanValidationState, DocProcessorState, DocRetrieverState ########################################################################## ###### NODES DEFINITION ###### ########################################################################## def validate_node(state: State): """ This node inserts the plan validation prompt. """ prompt = """System : You only need to focus on Key Issues, no need to focus on solutions or stakeholders yet and your plan should be concise. If needed, give me an updated plan to follow this instruction. If your plan already follows the instruction just say "My plan is correct".""" output = HumanMessage(content=prompt) return {"messages" : [output]} # Wrappers to call LLMs on the state messsages field def chatbot_llama(state: State): llm_llama = ChatGroq(model="llama3-70b-8192") return {"messages" : [llm_llama.invoke(state["messages"])]} def chatbot_mixtral(state: State): llm_mixtral = ChatGroq(model="mixtral-8x7b-32768") return {"messages" : [llm_mixtral.invoke(state["messages"])]} def chatbot_openai(state: State): llm_openai = ChatOpenAI(model='gpt-4o', base_url="https://llm.synapse.thalescloud.io/") return {"messages" : [llm_openai.invoke(state["messages"])]} chatbots = {"gpt-4o" : chatbot_openai, "mixtral-8x7b-32768" : chatbot_mixtral, "llama3-70b-8192" : chatbot_llama } def parse_plan(state: State): """ This node parses the generated plan and writes in the 'store_plan' field of the state """ plan = state["messages"][-3].content store_plan = re.split("\d\.", plan.split("Plan:\n")[1])[1:] try: store_plan[len(store_plan) - 1] = store_plan[len(store_plan) - 1].split("")[0] except Exception as e: print(f"Error while removing : {e}") return {"store_plan" : store_plan} def detail_step(state: State, config: ConfigSchema): """ This node updates the value of the 'current_plan_step' field and defines the query to be used for the data_retriever. """ print("test") print(state) if 'current_plan_step' in state.keys(): print("all good chief") else: state["current_plan_step"] = None current_plan_step = state["current_plan_step"] + 1 if state["current_plan_step"] is not None else 0 # We just began a new step so we will increase current_plan_step at the end if config["configurable"].get("use_detailed_query"): prompt = HumanMessage(f"""Specify what additional information you need to proceed with the next step of your plan : Step {current_plan_step + 1} : {state['store_plan'][current_plan_step]}""") query = get_detailed_query(context = state["messages"] + [prompt], model=config["configurable"].get("main_llm")) return {"messages" : [prompt, query], "current_plan_step": current_plan_step, 'query' : query} return {"current_plan_step": current_plan_step, 'query' : state["store_plan"][current_plan_step], "valid_docs" : []} def get_detailed_query(context : list, model : str = "mixtral-8x7b-32768"): """ Simple helper function for the detail_step node """ if model == 'gpt-4o': llm = ChatOpenAI(model=model, base_url="https://llm.synapse.thalescloud.io/") else: llm = ChatGroq(model=model) return llm.invoke(context) def concatenate_data(state: State): """ This node concatenates all the data that was processed by the data_processor and inserts it in the state's messages """ prompt = f"""#########TECHNICAL INFORMATION ############ {str(state["valid_docs"])} ########END OF TECHNICAL INFORMATION####### Using the information provided above, proceed with step {state['current_plan_step'] + 1} of your plan : {state['store_plan'][state['current_plan_step']]} """ return {"messages": [HumanMessage(content=prompt)]} def human_validation(state: HumanValidationState) -> HumanValidationState: """ Dummy node to interrupt before """ return {'process_steps' : []} def generate_ki(state: State): """ This node inserts the prompt to begin Key Issues generation """ print(f"THIS IS THE STATE FOR CURRENT PLAN STEP IN GENERATE_KI : {state}") prompt = f"""Using the information provided above, proceed with step 4 of your plan to provide the user with NEW and INNOVATIVE Key Issues : {state['store_plan'][state['current_plan_step'] + 1]}""" return {"messages" : [HumanMessage(content=prompt)]} def detail_ki(state: State): """ This node inserts the last prompt to detail the generated Key Issues """ prompt = f"""Using the information provided above, proceed with step 5 of your plan to provide the user with NEW and INNOVATIVE Key Issues : {state['store_plan'][state['current_plan_step'] + 2]}""" return {"messages" : [HumanMessage(content=prompt)]} ########################################################################## ###### CONDITIONAL EDGE FUNCTIONS ###### ########################################################################## def validate_plan(state: State): """ Whether to regenerate the plan or to parse it """ if "messages" in state and state["messages"][-1].content in ["My plan is correct.","My plan is correct"]: return "parse" return "validate" def next_plan_step(state: State, config: ConfigSchema): """ Proceed to next plan step (either generate KI or retrieve more data) """ if (state["current_plan_step"] == 2) and (config["configurable"].get('plan_method') == "modification"): return "generate_key_issues" if state["current_plan_step"] == len(state["store_plan"]) - 1: return "generate_key_issues" else: return "detail_step" def detail_or_data_retriever(state: State, config: ConfigSchema): """ Detail the query to use for data retrieval or not """ if config["configurable"].get("use_detailed_query"): return "chatbot_detail" else: return "data_retriever" def retrieve_or_process(state: State): """ Process the retrieved docs or keep retrieving """ if state['human_validated']: return "process" return "retrieve" # while True: # user_input = input(f"{len(state['valid_docs'])} were retreived. Do you want more documents (y/[n]) : ") # if user_input.lower() == "y": # return "retrieve" # if not user_input or user_input.lower() == "n": # return "process" # print("Please answer with 'y' or 'n'.\n") def build_planner_graph(memory, config): """ Builds the planner graph """ graph_builder = StateGraph(State) graph_doc_retriever = build_data_retriever_graph(memory) graph_doc_processor = build_data_processor_graph(memory) graph_builder.add_node("chatbot_planner", chatbots[config["main_llm"]]) graph_builder.add_node("validate", validate_node) graph_builder.add_node("chatbot_detail", chatbot_llama) graph_builder.add_node("parse", parse_plan) graph_builder.add_node("detail_step", detail_step) graph_builder.add_node("data_retriever", graph_doc_retriever, input=DocRetrieverState) graph_builder.add_node("human_validation", human_validation) graph_builder.add_node("data_processor", graph_doc_processor, input=DocProcessorState) graph_builder.add_node("concatenate_data", concatenate_data) graph_builder.add_node("chatbot_exec_step", chatbots[config["main_llm"]]) graph_builder.add_node("generate_ki", generate_ki) graph_builder.add_node("chatbot_ki", chatbots[config["main_llm"]]) graph_builder.add_node("detail_ki", detail_ki) graph_builder.add_node("chatbot_final", chatbots[config["main_llm"]]) graph_builder.add_edge("validate", "chatbot_planner") graph_builder.add_edge("parse", "detail_step") # graph_builder.add_edge("detail_step", "chatbot2") graph_builder.add_edge("chatbot_detail", "data_retriever") graph_builder.add_edge("data_retriever", "human_validation") graph_builder.add_edge("data_processor", "concatenate_data") graph_builder.add_edge("concatenate_data", "chatbot_exec_step") graph_builder.add_edge("generate_ki", "chatbot_ki") graph_builder.add_edge("chatbot_ki", "detail_ki") graph_builder.add_edge("detail_ki", "chatbot_final") graph_builder.add_edge("chatbot_final", "__end__") graph_builder.add_conditional_edges( "detail_step", detail_or_data_retriever, {"chatbot_detail": "chatbot_detail", "data_retriever": "data_retriever"} ) graph_builder.add_conditional_edges( "human_validation", retrieve_or_process, {"retrieve" : "data_retriever", "process" : "data_processor"} ) graph_builder.add_conditional_edges( "chatbot_planner", validate_plan, {"parse" : "parse", "validate": "validate"} ) graph_builder.add_conditional_edges( "chatbot_exec_step", next_plan_step, {"generate_key_issues" : "generate_ki", "detail_step": "detail_step"} ) graph_builder.set_entry_point("chatbot_planner") graph = graph_builder.compile( checkpointer=memory, interrupt_after=["parse", "chatbot_exec_step", "chatbot_final", "data_retriever"], ) return graph