##
compute_environment: LOCAL_MACHINE debug: false distributed_type: MULTI_XPU downcast_bf16: 'no' enable_cpu_affinity: false gpu_ids: 0,1,2,3 ipex_config: ipex: true machine_rank: 0 main_training_function: main mixed_precision: 'no' num_machines: 1 num_processes: 4 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false## None ## If the YAML was generated through the `accelerate config` command: ``` accelerate launch {script_name.py} {--arg1} {--arg2} ... ``` If the YAML is saved to a `~/config.yaml` file: ``` accelerate launch --config_file ~/config.yaml {script_name.py} {--arg1} {--arg2} ... ``` ## Launching on multi-XPU instances requires a different launch command than just `python myscript.py`. Accelerate will wrap around the proper launching script to delegate and call, reading in how to set their configuration based on the parameters passed in. It is a passthrough to the `torchrun` command. **Remember that you can always use the `accelerate launch` functionality, even if the code in your script does not use the `Accelerator`** ## To learn more checkout the related documentation: - Launching distributed code - The Command Line