Update app.py
Browse files
app.py
CHANGED
@@ -54,13 +54,20 @@ pipe_dict = {
|
|
54 |
"language": "english",
|
55 |
}
|
56 |
|
57 |
-
title =
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
|
65 |
|
66 |
# Inference
|
@@ -104,13 +111,24 @@ def generate_audio(text, model_id, language):
|
|
104 |
return out
|
105 |
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
# Gradio blocks demo
|
108 |
-
with gr.Blocks() as demo_blocks:
|
109 |
-
gr.Markdown(title)
|
110 |
-
|
111 |
with gr.Row():
|
112 |
with gr.Column():
|
113 |
-
inp_text = gr.Textbox(label="Input Text", info="What would you like
|
114 |
btn = gr.Button("Generate Audio!")
|
115 |
language = gr.Dropdown(
|
116 |
default_model_per_language.keys(),
|
@@ -120,18 +138,55 @@ with gr.Blocks() as demo_blocks:
|
|
120 |
)
|
121 |
|
122 |
model_id = gr.Dropdown(
|
123 |
-
models_per_language["
|
124 |
value="ylacombe/mms-spa-finetuned-chilean-monospeaker",
|
125 |
label="Model",
|
126 |
info="Model you want to test",
|
127 |
)
|
128 |
-
|
129 |
with gr.Column():
|
130 |
outputs = []
|
131 |
for i in range(max_speakers):
|
132 |
out_audio = gr.Audio(type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=False)
|
133 |
outputs.append(out_audio)
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
language.change(lambda language: gr.Dropdown(
|
136 |
models_per_language[language],
|
137 |
value=models_per_language[language][0],
|
|
|
54 |
"language": "english",
|
55 |
}
|
56 |
|
57 |
+
title = """# Explore MMS finetuning
|
58 |
+
## Or how to access truely multilingual TTS
|
59 |
|
60 |
+
Massively Multilingual Speech (MMS) models are light-weight, low-latency TTS models based on the [VITS architecture](https://huggingface.co/docs/transformers/model_doc/vits).
|
61 |
+
|
62 |
+
Meta's [MMS](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html),
|
63 |
+
and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts).
|
64 |
+
|
65 |
+
Coupled with the right data and the right training recipe, you can get an excellent finetuned version of every MMS checkpoints in **20 minutes** with as little as **80 to 150 samples**.
|
66 |
+
|
67 |
+
Stay tuned, the training recipe is coming soon!
|
68 |
+
"""
|
69 |
|
70 |
+
max_speakers = 15
|
71 |
|
72 |
|
73 |
# Inference
|
|
|
111 |
return out
|
112 |
|
113 |
|
114 |
+
css = """
|
115 |
+
#container{
|
116 |
+
margin: 0 auto;
|
117 |
+
max-width: 80rem;
|
118 |
+
}
|
119 |
+
#intro{
|
120 |
+
max-width: 100%;
|
121 |
+
text-align: center;
|
122 |
+
margin: 0 auto;
|
123 |
+
}
|
124 |
+
"""
|
125 |
# Gradio blocks demo
|
126 |
+
with gr.Blocks(css=css) as demo_blocks:
|
127 |
+
gr.Markdown(title, elem_id="intro")
|
128 |
+
|
129 |
with gr.Row():
|
130 |
with gr.Column():
|
131 |
+
inp_text = gr.Textbox(label="Input Text", info="What sentence would you like to synthesise?")
|
132 |
btn = gr.Button("Generate Audio!")
|
133 |
language = gr.Dropdown(
|
134 |
default_model_per_language.keys(),
|
|
|
138 |
)
|
139 |
|
140 |
model_id = gr.Dropdown(
|
141 |
+
models_per_language["spanish"],
|
142 |
value="ylacombe/mms-spa-finetuned-chilean-monospeaker",
|
143 |
label="Model",
|
144 |
info="Model you want to test",
|
145 |
)
|
146 |
+
|
147 |
with gr.Column():
|
148 |
outputs = []
|
149 |
for i in range(max_speakers):
|
150 |
out_audio = gr.Audio(type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=False)
|
151 |
outputs.append(out_audio)
|
152 |
|
153 |
+
gr.Markdown("""
|
154 |
+
## Datasets and models details
|
155 |
+
|
156 |
+
For each language, we used 100 to 150 samples of a single speaker to finetune the model.
|
157 |
+
|
158 |
+
### Spanish
|
159 |
+
|
160 |
+
* **Model**: [Spanish MMS TTS](https://huggingface.co/facebook/mms-tts-spa).
|
161 |
+
* **Datasets**:
|
162 |
+
- [Chilean Spanish TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-spanish).
|
163 |
+
|
164 |
+
### Tamil
|
165 |
+
|
166 |
+
* **Model**: [Tamil MMS TTS](https://huggingface.co/facebook/mms-tts-tam).
|
167 |
+
* **Datasets**:
|
168 |
+
- [Tamil TTS dataset](https://huggingface.co/datasets/ylacombe/google-tamil).
|
169 |
+
|
170 |
+
### Gujarati
|
171 |
+
|
172 |
+
* **Model**: [Gujarati MMS TTS](https://huggingface.co/facebook/mms-tts-guj).
|
173 |
+
* **Datasets**:
|
174 |
+
- [Gujarati TTS dataset](https://huggingface.co/datasets/ylacombe/google-gujarati).
|
175 |
+
|
176 |
+
### Marathi
|
177 |
+
|
178 |
+
* **Model**: [Marathi MMS TTS](https://huggingface.co/facebook/mms-tts-mar).
|
179 |
+
* **Datasets**:
|
180 |
+
- [Marathi TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-marathi).
|
181 |
+
|
182 |
+
### English
|
183 |
+
|
184 |
+
* **Model**: [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs)
|
185 |
+
* **Dataset**: [British Isles Accent](https://huggingface.co/datasets/ylacombe/english_dialects). For each accent, we used 100 to 150 samples of a single speaker to finetune [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs).
|
186 |
+
|
187 |
+
|
188 |
+
""")
|
189 |
+
|
190 |
language.change(lambda language: gr.Dropdown(
|
191 |
models_per_language[language],
|
192 |
value=models_per_language[language][0],
|