T5 / app.py
hf-dongpyo's picture
Update app.py
8a39aa7
raw
history blame
938 Bytes
from transformers import AutoModelWithLMHead, AutoTokenizer
import gradio as grad
text2text_tkn = AutoTokenizer.from_pretrained('mrm8488/t5-base-finetuned-question-generation-ap')
mdl = AutoModelWithLMHead.from_pretrained('mrm8488/t5-base-finetuned-question-generation-ap')
def text2text(context, answer):
input_text = "answer: %s context: %s </s>" % (answer, context)
features = text2text_tkn([input_text], return_tensors = 'pt')
output = mdl.generate(
input_ids = features['input_ids'],
attention_mask = features['attention_mask'],
max_length = 64
)
response = text2text_tkn.decode(output[0])
return response
context = grad.Textbox(lines = 10, label = 'English', placeholder = 'Context')
ans = grad.Textbox(lines = 1, label = 'Answer')
out = grad.Textbox(lines = 1, label = 'Generated Question')
grad.Interface(
text2text,
inputs = [context, ans],
outputs = out
).launch()