Spaces:
Runtime error
Runtime error
from transformers import AutoModelWithLMHead, AutoTokenizer | |
import gradio as grad | |
# make a question | |
# text2text_tkn = AutoTokenizer.from_pretrained('mrm8488/t5-base-finetuned-question-generation-ap') | |
# mdl = AutoModelWithLMHead.from_pretrained('mrm8488/t5-base-finetuned-question-generation-ap') | |
# summarize | |
text2text_tkn = AutoTokenizer.from_pretrained('deep-learning-analytics/wikihow-t5-small') | |
mdl = AutoModelWithLMHead.from_pretrained('deep-learning-analytics/wikihow-t5-small') | |
def text2text(context, answer): | |
input_text = "answer: %s context: %s </s>" % (answer, context) | |
features = text2text_tkn([input_text], return_tensors = 'pt') | |
output = mdl.generate( | |
input_ids = features['input_ids'], | |
attention_mask = features['attention_mask'], | |
max_length = 64 | |
) | |
response = text2text_tkn.decode(output[0]) | |
return response | |
def text2text_summary(para): | |
initial_txt = para.strip().replace("\n", "") | |
tkn_text = text2text_tkn.encode(initial_txt, return_tensors = 'pt') | |
tkn_ids = mdl.generate( | |
tkn_text, | |
max_length = 250, | |
num_beams = 5, | |
repetition_penalty = 2.5, | |
early_stopping = True | |
) | |
response = text2text_tkn.encode(tkn_ids[0], skip_special_tokens = True) | |
return response | |
# context = grad.Textbox(lines = 10, label = 'English', placeholder = 'Context') | |
# ans = grad.Textbox(lines = 1, label = 'Answer') | |
# out = grad.Textbox(lines = 1, label = 'Generated Question') | |
para = grad.Textbox(lines = 10, label = 'Paragraph', placeholder = 'Copy paragraph') | |
out = grad.Textbox(lines = 1, label = 'Summary') | |
grad.Interface( | |
# text2text, | |
# inputs = [context, ans], | |
text2text_summary, | |
inputs = para, | |
outputs = out | |
).launch() |