Spaces:
Sleeping
Sleeping
File size: 1,179 Bytes
84fb171 71c9e6d 84fb171 71c9e6d 84fb171 71c9e6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
# from transformers import pipeline
from transformers import BartForSequenceClassification, BartTokenizer
import gradio as grad
# zero_shot_classifier = pipeline("zero-shot-classification")
bart_tkn = BartTokenizer.from_pretrained('facebook/bart-large-mnli')
mdl = BartForSequenceClassification.from_pretrained('facebook/bart-large-mnli')
# def classify(text, labels):
def classify(text, label):
# classifier_labels = labels.split(",")
# #["software", "politics", "love", "movies", "emergency", "advertisment", "sports"]
# response = zero_shot_classifier(text, classifier_labels)
tkn_ids = bart_tkn.encode(text, label, return_tensors = "pt")
tkn_lgts = mdl(tkn_ids)[0]
entail_contra_tkn_lgts = tkn_lgts[:, [0, 2]]
probab = entail_contra_tkn_lgts.softmax(dim = 1)
response = probab[:, 1].item() * 100
return response
txt = grad.Textbox(lines = 1, label = "English", placeholder = "text to be classified")
labels = grad.Textbox(lines = 1, label = "Labels", placeholder = "comma separated labels")
out = grad.Textbox(lines = 1, label = "Classification")
grad.Interface(
classify,
inputs = [txt, labels],
outputs = out
).launch() |