Anindyadeep commited on
Commit
ebbfbd3
·
1 Parent(s): 7ebcf87

initial commit

Browse files
Files changed (1) hide show
  1. app.py +60 -0
app.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import matplotlib.pyplot as plt
3
+ import numpy as np
4
+ import torch
5
+ from PIL import Image, ImageDraw
6
+ from transformers import AutoImageProcessor, AutoModelForObjectDetection
7
+
8
+ description = """
9
+ ## This interface is made with 🤗 Gradio.
10
+
11
+ Simply upload an image of any person wearning/not-wearing helmet.
12
+ """
13
+
14
+ image_processor = AutoImageProcessor.from_pretrained(
15
+ "devonho/detr-resnet-50_finetuned_cppe5"
16
+ )
17
+ model = AutoModelForObjectDetection.from_pretrained(
18
+ "devonho/detr-resnet-50_finetuned_cppe5"
19
+ )
20
+
21
+ # Gradio Components
22
+
23
+ image_in = gr.components.Image()
24
+ image_out = gr.components.Image()
25
+
26
+
27
+ def model_inference(img):
28
+ with torch.no_grad():
29
+ inputs = image_processor(images=img, return_tensors="pt")
30
+ outputs = model(**inputs)
31
+ target_sizes = torch.tensor([img.size[::-1]])
32
+ results = image_processor.post_process_object_detection(
33
+ outputs, threshold=0.5, target_sizes=target_sizes
34
+ )[0]
35
+ return results
36
+
37
+
38
+ def plot_results(image):
39
+ image = Image.fromarray(np.uint8(image))
40
+ results = model_inference(img=image)
41
+ draw = ImageDraw.Draw(image)
42
+ for score, label, box in zip(
43
+ results["scores"], results["labels"], results["boxes"]
44
+ ):
45
+ score = score.item()
46
+ box = [round(i, 2) for i in box.tolist()]
47
+ x, y, x2, y2 = tuple(box)
48
+ draw.rectangle((x, y, x2, y2), outline="red", width=1)
49
+ draw.text((x, y), model.config.id2label[label.item()], fill="white")
50
+ draw.text((x+0.5, y-0.5), text=str(score), fill='green' if score > 0.7 else 'red')
51
+ return image
52
+
53
+
54
+ Iface = gr.Interface(
55
+ fn=plot_results,
56
+ inputs=[image_in],
57
+ outputs=image_out,
58
+ title="Object Detection Using Fine-Tuned Vision Transformers",
59
+ description=description,
60
+ ).launch()