Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- README.md +4 -4
- app.py +200 -0
- requirements.txt +10 -0
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.16.2
|
| 8 |
app_file: app.py
|
|
|
|
| 1 |
---
|
| 2 |
+
title: WikipediaAIWithDataframeMemory
|
| 3 |
+
emoji: 🏢
|
| 4 |
+
colorFrom: gray
|
| 5 |
+
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.16.2
|
| 8 |
app_file: app.py
|
app.py
ADDED
|
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spacy
|
| 2 |
+
import wikipediaapi
|
| 3 |
+
import wikipedia
|
| 4 |
+
from wikipedia.exceptions import DisambiguationError
|
| 5 |
+
from transformers import TFAutoModel, AutoTokenizer
|
| 6 |
+
import numpy as np
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import faiss
|
| 9 |
+
import gradio as gr
|
| 10 |
+
|
| 11 |
+
try:
|
| 12 |
+
nlp = spacy.load("en_core_web_sm")
|
| 13 |
+
except:
|
| 14 |
+
spacy.cli.download("en_core_web_sm")
|
| 15 |
+
nlp = spacy.load("en_core_web_sm")
|
| 16 |
+
|
| 17 |
+
wh_words = ['what', 'who', 'how', 'when', 'which']
|
| 18 |
+
def get_concepts(text):
|
| 19 |
+
text = text.lower()
|
| 20 |
+
doc = nlp(text)
|
| 21 |
+
concepts = []
|
| 22 |
+
for chunk in doc.noun_chunks:
|
| 23 |
+
if chunk.text not in wh_words:
|
| 24 |
+
concepts.append(chunk.text)
|
| 25 |
+
return concepts
|
| 26 |
+
|
| 27 |
+
def get_passages(text, k=100):
|
| 28 |
+
doc = nlp(text)
|
| 29 |
+
passages = []
|
| 30 |
+
passage_len = 0
|
| 31 |
+
passage = ""
|
| 32 |
+
sents = list(doc.sents)
|
| 33 |
+
for i in range(len(sents)):
|
| 34 |
+
sen = sents[i]
|
| 35 |
+
passage_len+=len(sen)
|
| 36 |
+
if passage_len >= k:
|
| 37 |
+
passages.append(passage)
|
| 38 |
+
passage = sen.text
|
| 39 |
+
passage_len = len(sen)
|
| 40 |
+
continue
|
| 41 |
+
|
| 42 |
+
elif i==(len(sents)-1):
|
| 43 |
+
passage+=" "+sen.text
|
| 44 |
+
passages.append(passage)
|
| 45 |
+
passage = ""
|
| 46 |
+
passage_len = 0
|
| 47 |
+
continue
|
| 48 |
+
|
| 49 |
+
passage+=" "+sen.text
|
| 50 |
+
return passages
|
| 51 |
+
|
| 52 |
+
def get_dicts_for_dpr(concepts, n_results=20, k=100):
|
| 53 |
+
dicts = []
|
| 54 |
+
for concept in concepts:
|
| 55 |
+
wikis = wikipedia.search(concept, results=n_results)
|
| 56 |
+
print(concept, "No of Wikis: ",len(wikis))
|
| 57 |
+
for wiki in wikis:
|
| 58 |
+
try:
|
| 59 |
+
html_page = wikipedia.page(title = wiki, auto_suggest = False)
|
| 60 |
+
except DisambiguationError:
|
| 61 |
+
continue
|
| 62 |
+
|
| 63 |
+
htmlResults=html_page.content
|
| 64 |
+
|
| 65 |
+
passages = get_passages(htmlResults, k=k)
|
| 66 |
+
for passage in passages:
|
| 67 |
+
i_dicts = {}
|
| 68 |
+
i_dicts['text'] = passage
|
| 69 |
+
i_dicts['title'] = wiki
|
| 70 |
+
dicts.append(i_dicts)
|
| 71 |
+
return dicts
|
| 72 |
+
|
| 73 |
+
passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
|
| 74 |
+
query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")
|
| 75 |
+
p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
|
| 76 |
+
q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")
|
| 77 |
+
|
| 78 |
+
def get_title_text_combined(passage_dicts):
|
| 79 |
+
res = []
|
| 80 |
+
for p in passage_dicts:
|
| 81 |
+
res.append(tuple((p['title'], p['text'])))
|
| 82 |
+
return res
|
| 83 |
+
|
| 84 |
+
def extracted_passage_embeddings(processed_passages, max_length=156):
|
| 85 |
+
passage_inputs = p_tokenizer.batch_encode_plus(
|
| 86 |
+
processed_passages,
|
| 87 |
+
add_special_tokens=True,
|
| 88 |
+
truncation=True,
|
| 89 |
+
padding="max_length",
|
| 90 |
+
max_length=max_length,
|
| 91 |
+
return_token_type_ids=True
|
| 92 |
+
)
|
| 93 |
+
passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']),
|
| 94 |
+
np.array(passage_inputs['attention_mask']),
|
| 95 |
+
np.array(passage_inputs['token_type_ids'])],
|
| 96 |
+
batch_size=64,
|
| 97 |
+
verbose=1)
|
| 98 |
+
return passage_embeddings
|
| 99 |
+
|
| 100 |
+
def extracted_query_embeddings(queries, max_length=64):
|
| 101 |
+
query_inputs = q_tokenizer.batch_encode_plus(
|
| 102 |
+
queries,
|
| 103 |
+
add_special_tokens=True,
|
| 104 |
+
truncation=True,
|
| 105 |
+
padding="max_length",
|
| 106 |
+
max_length=max_length,
|
| 107 |
+
return_token_type_ids=True
|
| 108 |
+
)
|
| 109 |
+
query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']),
|
| 110 |
+
np.array(query_inputs['attention_mask']),
|
| 111 |
+
np.array(query_inputs['token_type_ids'])],
|
| 112 |
+
batch_size=1,
|
| 113 |
+
verbose=1)
|
| 114 |
+
return query_embeddings
|
| 115 |
+
|
| 116 |
+
#Wikipedia API:
|
| 117 |
+
|
| 118 |
+
def get_pagetext(page):
|
| 119 |
+
s=str(page).replace("/t","")
|
| 120 |
+
|
| 121 |
+
return s
|
| 122 |
+
|
| 123 |
+
def get_wiki_summary(search):
|
| 124 |
+
wiki_wiki = wikipediaapi.Wikipedia('en')
|
| 125 |
+
page = wiki_wiki.page(search)
|
| 126 |
+
|
| 127 |
+
isExist = page.exists()
|
| 128 |
+
if not isExist:
|
| 129 |
+
return isExist, "Not found", "Not found", "Not found", "Not found"
|
| 130 |
+
|
| 131 |
+
pageurl = page.fullurl
|
| 132 |
+
pagetitle = page.title
|
| 133 |
+
pagesummary = page.summary[0:60]
|
| 134 |
+
pagetext = get_pagetext(page.text)
|
| 135 |
+
|
| 136 |
+
backlinks = page.backlinks
|
| 137 |
+
linklist = ""
|
| 138 |
+
for link in backlinks.items():
|
| 139 |
+
pui = link[0]
|
| 140 |
+
linklist += pui + " , "
|
| 141 |
+
a=1
|
| 142 |
+
|
| 143 |
+
categories = page.categories
|
| 144 |
+
categorylist = ""
|
| 145 |
+
for category in categories.items():
|
| 146 |
+
pui = category[0]
|
| 147 |
+
categorylist += pui + " , "
|
| 148 |
+
a=1
|
| 149 |
+
|
| 150 |
+
links = page.links
|
| 151 |
+
linklist2 = ""
|
| 152 |
+
for link in links.items():
|
| 153 |
+
pui = link[0]
|
| 154 |
+
linklist2 += pui + " , "
|
| 155 |
+
a=1
|
| 156 |
+
|
| 157 |
+
sections = page.sections
|
| 158 |
+
|
| 159 |
+
ex_dic = {
|
| 160 |
+
'Entity' : ["URL","Title","Summary", "Text", "Backlinks", "Links", "Categories"],
|
| 161 |
+
'Value': [pageurl, pagetitle, pagesummary, pagetext, linklist,linklist2, categorylist ]
|
| 162 |
+
}
|
| 163 |
+
|
| 164 |
+
df = pd.DataFrame(ex_dic)
|
| 165 |
+
|
| 166 |
+
return df
|
| 167 |
+
|
| 168 |
+
def search(question):
|
| 169 |
+
concepts = get_concepts(question)
|
| 170 |
+
print("concepts: ",concepts)
|
| 171 |
+
dicts = get_dicts_for_dpr(concepts, n_results=1)
|
| 172 |
+
lendicts = len(dicts)
|
| 173 |
+
print("dicts len: ", lendicts)
|
| 174 |
+
if lendicts == 0:
|
| 175 |
+
return pd.DataFrame()
|
| 176 |
+
processed_passages = get_title_text_combined(dicts)
|
| 177 |
+
passage_embeddings = extracted_passage_embeddings(processed_passages)
|
| 178 |
+
query_embeddings = extracted_query_embeddings([question])
|
| 179 |
+
faiss_index = faiss.IndexFlatL2(128)
|
| 180 |
+
faiss_index.add(passage_embeddings.pooler_output)
|
| 181 |
+
prob, index = faiss_index.search(query_embeddings.pooler_output, k=lendicts)
|
| 182 |
+
return pd.DataFrame([dicts[i] for i in index[0]])
|
| 183 |
+
|
| 184 |
+
# AI UI SOTA - Gradio blocks with UI formatting, and event driven UI
|
| 185 |
+
with gr.Blocks() as demo: # Block documentation on event listeners, start here: https://gradio.app/blocks_and_event_listeners/
|
| 186 |
+
gr.Markdown("<h1><center>🍰 Ultimate Wikipedia AI 🎨</center></h1>")
|
| 187 |
+
gr.Markdown("""<div align="center">Search and Find Anything Then Use in AI! <a href="https://www.mediawiki.org/wiki/API:Main_page">MediaWiki - API for Wikipedia</a>. <a href="https://paperswithcode.com/datasets?q=wikipedia&v=lst&o=newest">Papers,Code,Datasets for SOTA w/ Wikipedia</a>""")
|
| 188 |
+
with gr.Row(): # inputs and buttons
|
| 189 |
+
inp = gr.Textbox(lines=1, default="Syd Mead", label="Question")
|
| 190 |
+
with gr.Row(): # inputs and buttons
|
| 191 |
+
b3 = gr.Button("Search AI Summaries")
|
| 192 |
+
b4 = gr.Button("Search Web Live")
|
| 193 |
+
with gr.Row(): # outputs DF1
|
| 194 |
+
out = gr.Dataframe(label="Answers", type="pandas")
|
| 195 |
+
with gr.Row(): # output DF2
|
| 196 |
+
out_DF = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate", datatype = ["markdown", "markdown"], headers=['Entity', 'Value'])
|
| 197 |
+
inp.submit(fn=get_wiki_summary, inputs=inp, outputs=out_DF)
|
| 198 |
+
b3.click(fn=search, inputs=inp, outputs=out)
|
| 199 |
+
b4.click(fn=get_wiki_summary, inputs=inp, outputs=out_DF )
|
| 200 |
+
demo.launch(debug=True, show_error=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
wikipedia
|
| 2 |
+
spacy
|
| 3 |
+
faiss-cpu
|
| 4 |
+
pandas
|
| 5 |
+
transformers
|
| 6 |
+
tensorflow
|
| 7 |
+
wikipedia-api
|
| 8 |
+
beautifulsoup4
|
| 9 |
+
gradio
|
| 10 |
+
requests
|