SAMReg / app.py
hhhhhh0103's picture
Update app.py
60f010b verified
from transformers import SamModel, SamProcessor, pipeline
import cv2
import random
import numpy as np
import torch
from torch.nn.functional import cosine_similarity
import gradio as gr
class RoiMatching():
def __init__(self,img1,img2,device='cpu', v_min=200, v_max= 7000, mode = 'embedding'):
"""
Initialize
:param img1: PIL image
:param img2:
"""
self.img1 = img1
self.img2 = img2
self.device = device
self.v_min = v_min
self.v_max = v_max
self.mode = mode
def _sam_everything(self,imgs):
generator = pipeline("mask-generation", model="facebook/sam-vit-huge", device=self.device)
outputs = generator(imgs, points_per_batch=64,pred_iou_thresh=0.90,stability_score_thresh=0.9,)
return outputs
def _mask_criteria(self, masks, v_min=200, v_max= 7000):
remove_list = set()
for _i, mask in enumerate(masks):
if mask.sum() < v_min or mask.sum() > v_max:
remove_list.add(_i)
masks = [mask for idx, mask in enumerate(masks) if idx not in remove_list]
n = len(masks)
remove_list = set()
for i in range(n):
for j in range(i + 1, n):
mask1, mask2 = masks[i], masks[j]
intersection = (mask1 & mask2).sum()
smaller_mask_area = min(masks[i].sum(), masks[j].sum())
if smaller_mask_area > 0 and (intersection / smaller_mask_area) >= 0.9:
if mask1.sum() < mask2.sum():
remove_list.add(i)
else:
remove_list.add(j)
return [mask for idx, mask in enumerate(masks) if idx not in remove_list]
def _roi_proto(self, image, masks):
model = SamModel.from_pretrained("facebook/sam-vit-huge").to(self.device)
processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
inputs = processor(image, return_tensors="pt").to(self.device)
image_embeddings = model.get_image_embeddings(inputs["pixel_values"])
embs = []
for _m in masks:
# Convert mask to uint8, resize, and then back to boolean
tmp_m = _m.astype(np.uint8)
tmp_m = cv2.resize(tmp_m, (64, 64), interpolation=cv2.INTER_NEAREST)
tmp_m = torch.tensor(tmp_m.astype(bool), device=self.device,
dtype=torch.float32) # Convert to tensor and send to CUDA
tmp_m = tmp_m.unsqueeze(0).unsqueeze(0) # Add batch and channel dimensions to match emb1
# Element-wise multiplication with emb1
tmp_emb = image_embeddings * tmp_m
# (1,256,64,64)
tmp_emb[tmp_emb == 0] = torch.nan
emb = torch.nanmean(tmp_emb, dim=(2, 3))
emb[torch.isnan(emb)] = 0
embs.append(emb)
return embs
def _cosine_similarity(self, vec1, vec2):
# Ensure vec1 and vec2 are 2D tensors [1, N]
vec1 = vec1.view(1, -1)
vec2 = vec2.view(1, -1)
return cosine_similarity(vec1, vec2).item()
def _similarity_matrix(self, protos1, protos2):
# Initialize similarity_matrix as a torch tensor
similarity_matrix = torch.zeros(len(protos1), len(protos2), device=self.device)
for i, vec_a in enumerate(protos1):
for j, vec_b in enumerate(protos2):
similarity_matrix[i, j] = self._cosine_similarity(vec_a, vec_b)
# Normalize the similarity matrix
sim_matrix = (similarity_matrix - similarity_matrix.min()) / (similarity_matrix.max() - similarity_matrix.min())
return similarity_matrix
def _roi_match(self, matrix, masks1, masks2, sim_criteria=0.8):
index_pairs = []
while torch.any(matrix > sim_criteria):
max_idx = torch.argmax(matrix)
max_sim_idx = (max_idx // matrix.shape[1], max_idx % matrix.shape[1])
if matrix[max_sim_idx[0], max_sim_idx[1]] > sim_criteria:
index_pairs.append(max_sim_idx)
matrix[max_sim_idx[0], :] = -1
matrix[:, max_sim_idx[1]] = -1
masks1_new = []
masks2_new = []
for i, j in index_pairs:
masks1_new.append(masks1[i])
masks2_new.append(masks2[j])
return masks1_new, masks2_new
def _overlap_pair(self, masks1,masks2):
self.masks1_cor = []
self.masks2_cor = []
k = 0
for mask in masks1[:-1]:
k += 1
print('mask1 {} is finding corresponding region mask...'.format(k))
m1 = mask
a1 = mask.sum()
v1 = np.mean(np.expand_dims(m1, axis=-1) * self.im1)
overlap = m1 * masks2[-1].astype(np.int64)
# print(np.unique(overlap))
if (overlap > 0).sum() / a1 > 0.3:
counts = np.bincount(overlap.flatten())
# print(counts)
sorted_indices = np.argsort(counts)[::-1]
top_two = sorted_indices[1:3]
# print(top_two)
if top_two[-1] == 0:
cor_ind = 0
elif abs(counts[top_two[-1]] - counts[top_two[0]]) / max(counts[top_two[-1]], counts[top_two[0]]) < 0.2:
cor_ind = 0
else:
# cor_ind = 0
m21 = masks2[top_two[0]-1]
m22 = masks2[top_two[1]-1]
a21 = masks2[top_two[0]-1].sum()
a22 = masks2[top_two[1]-1].sum()
v21 = np.mean(np.expand_dims(m21, axis=-1)*self.im2)
v22 = np.mean(np.expand_dims(m22, axis=-1)*self.im2)
if np.abs(a21-a1) > np.abs(a22-a1):
cor_ind = 0
else:
cor_ind = 1
print('area judge to cor_ind {}'.format(cor_ind))
if np.abs(v21-v1) < np.abs(v22-v1):
cor_ind = 0
else:
cor_ind = 1
# print('value judge to cor_ind {}'.format(cor_ind))
# print('mask1 {} has found the corresponding region mask: mask2 {}'.format(k, top_two[cor_ind]))
self.masks2_cor.append(masks2[top_two[cor_ind] - 1])
self.masks1_cor.append(mask)
# return masks1_new, masks2_new
def get_paired_roi(self):
batched_imgs = [self.img1, self.img2]
batched_outputs = self._sam_everything(batched_imgs)
self.masks1, self.masks2 = batched_outputs[0], batched_outputs[1]
# self.masks1 = self._sam_everything(self.img1) # len(RM.masks1) 2; RM.masks1[0] dict; RM.masks1[0]['masks'] list
# self.masks2 = self._sam_everything(self.img2)
self.masks1 = self._mask_criteria(self.masks1['masks'], v_min=self.v_min, v_max=self.v_max)
self.masks2 = self._mask_criteria(self.masks2['masks'], v_min=self.v_min, v_max=self.v_max)
match self.mode:
case 'embedding':
if len(self.masks1) > 0 and len(self.masks2) > 0:
self.embs1 = self._roi_proto(self.img1,self.masks1) #device:cuda1
self.embs2 = self._roi_proto(self.img2,self.masks2)
self.sim_matrix = self._similarity_matrix(self.embs1, self.embs2)
self.masks1, self.masks2 = self._roi_match(self.sim_matrix,self.masks1,self.masks2)
case 'overlaping':
self._overlap_pair(self.masks1,self.masks2)
def visualize_masks(image1, masks1, image2, masks2):
# Convert PIL images to numpy arrays
background1 = np.array(image1)
background2 = np.array(image2)
# Convert RGB to BGR (OpenCV uses BGR color format)
background1 = cv2.cvtColor(background1, cv2.COLOR_RGB2BGR)
background2 = cv2.cvtColor(background2, cv2.COLOR_RGB2BGR)
# Create a blank mask for each image
mask1 = np.zeros_like(background1)
mask2 = np.zeros_like(background2)
distinct_colors = [
(255, 0, 0), # Red
(0, 255, 0), # Green
(0, 0, 255), # Blue
(255, 255, 0), # Cyan
(255, 0, 255), # Magenta
(0, 255, 255), # Yellow
(128, 0, 0), # Maroon
(0, 128, 0), # Olive
(0, 0, 128), # Navy
(128, 128, 0), # Teal
(128, 0, 128), # Purple
(0, 128, 128), # Gray
(192, 192, 192) # Silver
]
def random_color():
"""Generate a random color with high saturation and value in HSV color space."""
hue = random.randint(0, 179) # Random hue value between 0 and 179 (HSV uses 0-179 range)
saturation = random.randint(200, 255) # High saturation value between 200 and 255
value = random.randint(200, 255) # High value (brightness) between 200 and 255
color = np.array([[[hue, saturation, value]]], dtype=np.uint8)
return cv2.cvtColor(color, cv2.COLOR_HSV2BGR)[0][0]
# Iterate through mask lists and overlay on the blank masks with different colors
for idx, (mask1_item, mask2_item) in enumerate(zip(masks1, masks2)):
# color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
# color = distinct_colors[idx % len(distinct_colors)]
color = random_color()
# Convert binary masks to uint8
mask1_item = np.uint8(mask1_item)
mask2_item = np.uint8(mask2_item)
# Create a mask where binary mask is True
fg_mask1 = np.where(mask1_item, 255, 0).astype(np.uint8)
fg_mask2 = np.where(mask2_item, 255, 0).astype(np.uint8)
# Apply the foreground masks on the corresponding masks with the same color
mask1[fg_mask1 > 0] = color
mask2[fg_mask2 > 0] = color
# Add the masks on top of the background images
result1 = cv2.addWeighted(background1, 1, mask1, 0.5, 0)
result2 = cv2.addWeighted(background2, 1, mask2, 0.5, 0)
return result1, result2
def predict(im1,im2):
RM = RoiMatching(im1,im2,device='cpu')
RM.get_paired_roi()
visualized_image1, visualized_image2 = visualize_masks(im1, RM.masks1, im2, RM.masks2)
return visualized_image1, visualized_image2
examples = [
['./example/prostate_2d/image1.png', './example/prostate_2d/image2.png'],
['./example/cardiac_2d/image1.png', './example/cardiac_2d/image2.png'],
['./example/pathology/1B_B7_R.png', './example/pathology/1B_B7_T.png'],
]
gradio_app = gr.Interface(
predict,
inputs=[gr.Image(label="img1", type="pil"), gr.Image(label="img2", type="pil")],
outputs=[gr.Image(label="ROIs in img1"), gr.Image(label="ROIs in img2")],
title="SAMReg: One Registration is Worth Two Segmentations",
examples=examples,
description="<p> \
<strong>Register anything using ROI-based correspondence representation.</strong> <br>\
Choose an example below &#128293; &#128293; &#128293; <br>\
Or, upload your own images to 'img1' and 'img2'. <br>\
The CPU's hardware limitations result in an inference time of roughly 875 seconds for a single run. <br>\
<br> \
πŸ’Ž The correspondence representation is illustrated by multiple paired-ROIs in the same color. <br>\
πŸ’Ž The examples below consist of medical images because the algorithm was initially proposed for medical registration. <br>\
πŸ’Ž Current UI interface only unleashes a small part of the capabilities of SAMReg, i.e., 2D registration w 'embedding' mode. \
</p>",
cache_examples=False,
# allow_flagging="never",
)
gradio_app.launch(share=True)