hhhhhh0103 commited on
Commit
57d1f06
β€’
1 Parent(s): 43e5dc3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -6
app.py CHANGED
@@ -7,7 +7,7 @@ from torch.nn.functional import cosine_similarity
7
  import gradio as gr
8
 
9
  class RoiMatching():
10
- def __init__(self,img1,img2,device='cuda:1', v_min=200, v_max= 7000, mode = 'embedding'):
11
  """
12
  Initialize
13
  :param img1: PIL image
@@ -230,11 +230,11 @@ def predict(im1,im2):
230
  visualized_image1, visualized_image2 = visualize_masks(im1, RM.masks1, im2, RM.masks2)
231
  return visualized_image1, visualized_image2
232
 
233
- # examples = [
234
- # ['./example/prostate_2d/image1.png', './example/prostate_2d/image2.png'],
235
- # ['./example/cardiac_2d/image1.png', './example/cardiac_2d/image2.png'],
236
  # ['./example/pathology/1B_B7_R.png', './example/pathology/1B_B7_T.png'],
237
- # ]
238
 
239
 
240
  gradio_app = gr.Interface(
@@ -242,7 +242,7 @@ gradio_app = gr.Interface(
242
  inputs=[gr.Image(label="img1", type="pil"), gr.Image(label="img2", type="pil")],
243
  outputs=[gr.Image(label="ROIs in img1"), gr.Image(label="ROIs in img2")],
244
  title="SAMReg: One Registration is Worth Two Segmentations",
245
- # examples=examples,
246
  description="<p> \
247
  <strong>Register anything with ROI-based registration representation.</strong> <br>\
248
  Choose an example below &#128293; &#128293; &#128293; <br>\
@@ -253,4 +253,6 @@ gradio_app = gr.Interface(
253
  πŸ’Ž Examples below are all medical images for the algorithm proposed for medical registration initially. <br>\
254
  πŸ’Ž Current UI interface only unleashes a small part of the capabilities of SAMReg, i.e., 2D registration w 'embedding' mode. \
255
  </p>",
 
 
256
  )
 
7
  import gradio as gr
8
 
9
  class RoiMatching():
10
+ def __init__(self,img1,img2,device='cpu', v_min=200, v_max= 7000, mode = 'embedding'):
11
  """
12
  Initialize
13
  :param img1: PIL image
 
230
  visualized_image1, visualized_image2 = visualize_masks(im1, RM.masks1, im2, RM.masks2)
231
  return visualized_image1, visualized_image2
232
 
233
+ examples = [
234
+ ['./example/prostate_2d/image1.png', './example/prostate_2d/image2.png'],
235
+ ['./example/cardiac_2d/image1.png', './example/cardiac_2d/image2.png'],
236
  # ['./example/pathology/1B_B7_R.png', './example/pathology/1B_B7_T.png'],
237
+ ]
238
 
239
 
240
  gradio_app = gr.Interface(
 
242
  inputs=[gr.Image(label="img1", type="pil"), gr.Image(label="img2", type="pil")],
243
  outputs=[gr.Image(label="ROIs in img1"), gr.Image(label="ROIs in img2")],
244
  title="SAMReg: One Registration is Worth Two Segmentations",
245
+ examples=examples,
246
  description="<p> \
247
  <strong>Register anything with ROI-based registration representation.</strong> <br>\
248
  Choose an example below &#128293; &#128293; &#128293; <br>\
 
253
  πŸ’Ž Examples below are all medical images for the algorithm proposed for medical registration initially. <br>\
254
  πŸ’Ž Current UI interface only unleashes a small part of the capabilities of SAMReg, i.e., 2D registration w 'embedding' mode. \
255
  </p>",
256
+ cache_examples=False,
257
+ allow_flagging="never",
258
  )