File size: 40,922 Bytes
9eae06b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Export a YOLOv8 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit

Format                  | `format=argument`         | Model
---                     | ---                       | ---
PyTorch                 | -                         | yolov8n.pt
TorchScript             | `torchscript`             | yolov8n.torchscript
ONNX                    | `onnx`                    | yolov8n.onnx
OpenVINO                | `openvino`                | yolov8n_openvino_model/
TensorRT                | `engine`                  | yolov8n.engine
CoreML                  | `coreml`                  | yolov8n.mlmodel
TensorFlow SavedModel   | `saved_model`             | yolov8n_saved_model/
TensorFlow GraphDef     | `pb`                      | yolov8n.pb
TensorFlow Lite         | `tflite`                  | yolov8n.tflite
TensorFlow Edge TPU     | `edgetpu`                 | yolov8n_edgetpu.tflite
TensorFlow.js           | `tfjs`                    | yolov8n_web_model/
PaddlePaddle            | `paddle`                  | yolov8n_paddle_model/

Requirements:
    $ pip install ultralytics[export]

Python:
    from ultralytics import YOLO
    model = YOLO('yolov8n.pt')
    results = model.export(format='onnx')

CLI:
    $ yolo mode=export model=yolov8n.pt format=onnx

Inference:
    $ yolo predict model=yolov8n.pt                 # PyTorch
                         yolov8n.torchscript        # TorchScript
                         yolov8n.onnx               # ONNX Runtime or OpenCV DNN with --dnn
                         yolov8n_openvino_model     # OpenVINO
                         yolov8n.engine             # TensorRT
                         yolov8n.mlmodel            # CoreML (macOS-only)
                         yolov8n_saved_model        # TensorFlow SavedModel
                         yolov8n.pb                 # TensorFlow GraphDef
                         yolov8n.tflite             # TensorFlow Lite
                         yolov8n_edgetpu.tflite     # TensorFlow Edge TPU
                         yolov8n_paddle_model       # PaddlePaddle

TensorFlow.js:
    $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
    $ npm install
    $ ln -s ../../yolov5/yolov8n_web_model public/yolov8n_web_model
    $ npm start
"""
import json
import os
import platform
import subprocess
import time
import warnings
from copy import deepcopy
from pathlib import Path

import torch

from ultralytics.nn.autobackend import check_class_names
from ultralytics.nn.modules import C2f, Detect, Segment
from ultralytics.nn.tasks import DetectionModel, SegmentationModel
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.utils import (DEFAULT_CFG, LINUX, LOGGER, MACOS, __version__, callbacks, colorstr,
                                    get_default_args, yaml_save)
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version
from ultralytics.yolo.utils.files import file_size
from ultralytics.yolo.utils.ops import Profile
from ultralytics.yolo.utils.torch_utils import get_latest_opset, select_device, smart_inference_mode

ARM64 = platform.machine() in ('arm64', 'aarch64')


def export_formats():
    """YOLOv8 export formats."""
    import pandas
    x = [
        ['PyTorch', '-', '.pt', True, True],
        ['TorchScript', 'torchscript', '.torchscript', True, True],
        ['ONNX', 'onnx', '.onnx', True, True],
        ['OpenVINO', 'openvino', '_openvino_model', True, False],
        ['TensorRT', 'engine', '.engine', False, True],
        ['CoreML', 'coreml', '.mlmodel', True, False],
        ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
        ['TensorFlow GraphDef', 'pb', '.pb', True, True],
        ['TensorFlow Lite', 'tflite', '.tflite', True, False],
        ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', True, False],
        ['TensorFlow.js', 'tfjs', '_web_model', True, False],
        ['PaddlePaddle', 'paddle', '_paddle_model', True, True], ]
    return pandas.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])


def gd_outputs(gd):
    """TensorFlow GraphDef model output node names."""
    name_list, input_list = [], []
    for node in gd.node:  # tensorflow.core.framework.node_def_pb2.NodeDef
        name_list.append(node.name)
        input_list.extend(node.input)
    return sorted(f'{x}:0' for x in list(set(name_list) - set(input_list)) if not x.startswith('NoOp'))


def try_export(inner_func):
    """YOLOv8 export decorator, i..e @try_export."""
    inner_args = get_default_args(inner_func)

    def outer_func(*args, **kwargs):
        """Export a model."""
        prefix = inner_args['prefix']
        try:
            with Profile() as dt:
                f, model = inner_func(*args, **kwargs)
            LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)')
            return f, model
        except Exception as e:
            LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}')
            return None, None

    return outer_func


class Exporter:
    """
    A class for exporting a model.

    Attributes:
        args (SimpleNamespace): Configuration for the exporter.
        save_dir (Path): Directory to save results.
    """

    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
        """
        Initializes the Exporter class.

        Args:
            cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.
            overrides (dict, optional): Configuration overrides. Defaults to None.
            _callbacks (list, optional): List of callback functions. Defaults to None.
        """
        self.args = get_cfg(cfg, overrides)
        self.callbacks = _callbacks or callbacks.get_default_callbacks()
        callbacks.add_integration_callbacks(self)

    @smart_inference_mode()
    def __call__(self, model=None):
        """Returns list of exported files/dirs after running callbacks."""
        self.run_callbacks('on_export_start')
        t = time.time()
        format = self.args.format.lower()  # to lowercase
        if format in ('tensorrt', 'trt'):  # engine aliases
            format = 'engine'
        fmts = tuple(export_formats()['Argument'][1:])  # available export formats
        flags = [x == format for x in fmts]
        if sum(flags) != 1:
            raise ValueError(f"Invalid export format='{format}'. Valid formats are {fmts}")
        jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags  # export booleans

        # Load PyTorch model
        self.device = select_device('cpu' if self.args.device is None else self.args.device)
        if self.args.half and onnx and self.device.type == 'cpu':
            LOGGER.warning('WARNING ⚠️ half=True only compatible with GPU export, i.e. use device=0')
            self.args.half = False
            assert not self.args.dynamic, 'half=True not compatible with dynamic=True, i.e. use only one.'

        # Checks
        model.names = check_class_names(model.names)
        self.imgsz = check_imgsz(self.args.imgsz, stride=model.stride, min_dim=2)  # check image size
        if self.args.optimize:
            assert self.device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
        if edgetpu and not LINUX:
            raise SystemError('Edge TPU export only supported on Linux. See https://coral.ai/docs/edgetpu/compiler/')

        # Input
        im = torch.zeros(self.args.batch, 3, *self.imgsz).to(self.device)
        file = Path(getattr(model, 'pt_path', None) or getattr(model, 'yaml_file', None) or model.yaml['yaml_file'])
        if file.suffix == '.yaml':
            file = Path(file.name)

        # Update model
        model = deepcopy(model).to(self.device)
        for p in model.parameters():
            p.requires_grad = False
        model.eval()
        model.float()
        model = model.fuse()
        for k, m in model.named_modules():
            if isinstance(m, (Detect, Segment)):
                m.dynamic = self.args.dynamic
                m.export = True
                m.format = self.args.format
            elif isinstance(m, C2f) and not any((saved_model, pb, tflite, edgetpu, tfjs)):
                # EdgeTPU does not support FlexSplitV while split provides cleaner ONNX graph
                m.forward = m.forward_split

        y = None
        for _ in range(2):
            y = model(im)  # dry runs
        if self.args.half and (engine or onnx) and self.device.type != 'cpu':
            im, model = im.half(), model.half()  # to FP16

        # Warnings
        warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)  # suppress TracerWarning
        warnings.filterwarnings('ignore', category=UserWarning)  # suppress shape prim::Constant missing ONNX warning
        warnings.filterwarnings('ignore', category=DeprecationWarning)  # suppress CoreML np.bool deprecation warning

        # Assign
        self.im = im
        self.model = model
        self.file = file
        self.output_shape = tuple(y.shape) if isinstance(y, torch.Tensor) else tuple(tuple(x.shape) for x in y)
        self.pretty_name = Path(self.model.yaml.get('yaml_file', self.file)).stem.replace('yolo', 'YOLO')
        trained_on = f'trained on {Path(self.args.data).name}' if self.args.data else '(untrained)'
        description = f'Ultralytics {self.pretty_name} model {trained_on}'
        self.metadata = {
            'description': description,
            'author': 'Ultralytics',
            'license': 'AGPL-3.0 https://ultralytics.com/license',
            'version': __version__,
            'stride': int(max(model.stride)),
            'task': model.task,
            'batch': self.args.batch,
            'imgsz': self.imgsz,
            'names': model.names}  # model metadata
        if model.task == 'pose':
            self.metadata['kpt_shape'] = model.kpt_shape

        LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with input shape {tuple(im.shape)} BCHW and "
                    f'output shape(s) {self.output_shape} ({file_size(file):.1f} MB)')

        # Exports
        f = [''] * len(fmts)  # exported filenames
        if jit:  # TorchScript
            f[0], _ = self.export_torchscript()
        if engine:  # TensorRT required before ONNX
            f[1], _ = self.export_engine()
        if onnx or xml:  # OpenVINO requires ONNX
            f[2], _ = self.export_onnx()
        if xml:  # OpenVINO
            f[3], _ = self.export_openvino()
        if coreml:  # CoreML
            f[4], _ = self.export_coreml()
        if any((saved_model, pb, tflite, edgetpu, tfjs)):  # TensorFlow formats
            self.args.int8 |= edgetpu
            f[5], s_model = self.export_saved_model()
            if pb or tfjs:  # pb prerequisite to tfjs
                f[6], _ = self.export_pb(s_model)
            if tflite:
                f[7], _ = self.export_tflite(s_model, nms=False, agnostic_nms=self.args.agnostic_nms)
            if edgetpu:
                f[8], _ = self.export_edgetpu(tflite_model=Path(f[5]) / f'{self.file.stem}_full_integer_quant.tflite')
            if tfjs:
                f[9], _ = self.export_tfjs()
        if paddle:  # PaddlePaddle
            f[10], _ = self.export_paddle()

        # Finish
        f = [str(x) for x in f if x]  # filter out '' and None
        if any(f):
            f = str(Path(f[-1]))
            square = self.imgsz[0] == self.imgsz[1]
            s = '' if square else f"WARNING ⚠️ non-PyTorch val requires square images, 'imgsz={self.imgsz}' will not " \
                                  f"work. Use export 'imgsz={max(self.imgsz)}' if val is required."
            imgsz = self.imgsz[0] if square else str(self.imgsz)[1:-1].replace(' ', '')
            data = f'data={self.args.data}' if model.task == 'segment' and format == 'pb' else ''
            LOGGER.info(
                f'\nExport complete ({time.time() - t:.1f}s)'
                f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
                f'\nPredict:         yolo predict task={model.task} model={f} imgsz={imgsz} {data}'
                f'\nValidate:        yolo val task={model.task} model={f} imgsz={imgsz} data={self.args.data} {s}'
                f'\nVisualize:       https://netron.app')

        self.run_callbacks('on_export_end')
        return f  # return list of exported files/dirs

    @try_export
    def export_torchscript(self, prefix=colorstr('TorchScript:')):
        """YOLOv8 TorchScript model export."""
        LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
        f = self.file.with_suffix('.torchscript')

        ts = torch.jit.trace(self.model, self.im, strict=False)
        extra_files = {'config.txt': json.dumps(self.metadata)}  # torch._C.ExtraFilesMap()
        if self.args.optimize:  # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
            LOGGER.info(f'{prefix} optimizing for mobile...')
            from torch.utils.mobile_optimizer import optimize_for_mobile
            optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
        else:
            ts.save(str(f), _extra_files=extra_files)
        return f, None

    @try_export
    def export_onnx(self, prefix=colorstr('ONNX:')):
        """YOLOv8 ONNX export."""
        requirements = ['onnx>=1.12.0']
        if self.args.simplify:
            requirements += ['onnxsim>=0.4.17', 'onnxruntime-gpu' if torch.cuda.is_available() else 'onnxruntime']
        check_requirements(requirements)
        import onnx  # noqa

        opset_version = self.args.opset or get_latest_opset()
        LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__} opset {opset_version}...')
        f = str(self.file.with_suffix('.onnx'))

        output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0']
        dynamic = self.args.dynamic
        if dynamic:
            dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}}  # shape(1,3,640,640)
            if isinstance(self.model, SegmentationModel):
                dynamic['output0'] = {0: 'batch', 1: 'anchors'}  # shape(1,25200,85)
                dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'}  # shape(1,32,160,160)
            elif isinstance(self.model, DetectionModel):
                dynamic['output0'] = {0: 'batch', 1: 'anchors'}  # shape(1,25200,85)

        torch.onnx.export(
            self.model.cpu() if dynamic else self.model,  # --dynamic only compatible with cpu
            self.im.cpu() if dynamic else self.im,
            f,
            verbose=False,
            opset_version=opset_version,
            do_constant_folding=True,  # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
            input_names=['images'],
            output_names=output_names,
            dynamic_axes=dynamic or None)

        # Checks
        model_onnx = onnx.load(f)  # load onnx model
        # onnx.checker.check_model(model_onnx)  # check onnx model

        # Simplify
        if self.args.simplify:
            try:
                import onnxsim

                LOGGER.info(f'{prefix} simplifying with onnxsim {onnxsim.__version__}...')
                # subprocess.run(f'onnxsim {f} {f}', shell=True)
                model_onnx, check = onnxsim.simplify(model_onnx)
                assert check, 'Simplified ONNX model could not be validated'
            except Exception as e:
                LOGGER.info(f'{prefix} simplifier failure: {e}')

        # Metadata
        for k, v in self.metadata.items():
            meta = model_onnx.metadata_props.add()
            meta.key, meta.value = k, str(v)

        onnx.save(model_onnx, f)
        return f, model_onnx

    @try_export
    def export_openvino(self, prefix=colorstr('OpenVINO:')):
        """YOLOv8 OpenVINO export."""
        check_requirements('openvino-dev>=2022.3')  # requires openvino-dev: https://pypi.org/project/openvino-dev/
        import openvino.runtime as ov  # noqa
        from openvino.tools import mo  # noqa

        LOGGER.info(f'\n{prefix} starting export with openvino {ov.__version__}...')
        f = str(self.file).replace(self.file.suffix, f'_openvino_model{os.sep}')
        f_onnx = self.file.with_suffix('.onnx')
        f_ov = str(Path(f) / self.file.with_suffix('.xml').name)

        ov_model = mo.convert_model(f_onnx,
                                    model_name=self.pretty_name,
                                    framework='onnx',
                                    compress_to_fp16=self.args.half)  # export

        # Set RT info
        ov_model.set_rt_info('YOLOv8', ['model_info', 'model_type'])
        ov_model.set_rt_info(True, ['model_info', 'reverse_input_channels'])
        ov_model.set_rt_info(114, ['model_info', 'pad_value'])
        ov_model.set_rt_info([255.0], ['model_info', 'scale_values'])
        ov_model.set_rt_info(self.args.iou, ['model_info', 'iou_threshold'])
        ov_model.set_rt_info([v.replace(' ', '_') for k, v in sorted(self.model.names.items())],
                             ['model_info', 'labels'])
        if self.model.task != 'classify':
            ov_model.set_rt_info('fit_to_window_letterbox', ['model_info', 'resize_type'])

        ov.serialize(ov_model, f_ov)  # save
        yaml_save(Path(f) / 'metadata.yaml', self.metadata)  # add metadata.yaml
        return f, None

    @try_export
    def export_paddle(self, prefix=colorstr('PaddlePaddle:')):
        """YOLOv8 Paddle export."""
        check_requirements(('paddlepaddle', 'x2paddle'))
        import x2paddle  # noqa
        from x2paddle.convert import pytorch2paddle  # noqa

        LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...')
        f = str(self.file).replace(self.file.suffix, f'_paddle_model{os.sep}')

        pytorch2paddle(module=self.model, save_dir=f, jit_type='trace', input_examples=[self.im])  # export
        yaml_save(Path(f) / 'metadata.yaml', self.metadata)  # add metadata.yaml
        return f, None

    @try_export
    def export_coreml(self, prefix=colorstr('CoreML:')):
        """YOLOv8 CoreML export."""
        check_requirements('coremltools>=6.0')
        import coremltools as ct  # noqa

        LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
        f = self.file.with_suffix('.mlmodel')

        bias = [0.0, 0.0, 0.0]
        scale = 1 / 255
        classifier_config = None
        if self.model.task == 'classify':
            classifier_config = ct.ClassifierConfig(list(self.model.names.values())) if self.args.nms else None
            model = self.model
        elif self.model.task == 'detect':
            model = iOSDetectModel(self.model, self.im) if self.args.nms else self.model
        else:
            # TODO CoreML Segment and Pose model pipelining
            model = self.model

        ts = torch.jit.trace(model.eval(), self.im, strict=False)  # TorchScript model
        ct_model = ct.convert(ts,
                              inputs=[ct.ImageType('image', shape=self.im.shape, scale=scale, bias=bias)],
                              classifier_config=classifier_config)
        bits, mode = (8, 'kmeans_lut') if self.args.int8 else (16, 'linear') if self.args.half else (32, None)
        if bits < 32:
            if 'kmeans' in mode:
                check_requirements('scikit-learn')  # scikit-learn package required for k-means quantization
            ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
        if self.args.nms and self.model.task == 'detect':
            ct_model = self._pipeline_coreml(ct_model)

        m = self.metadata  # metadata dict
        ct_model.short_description = m.pop('description')
        ct_model.author = m.pop('author')
        ct_model.license = m.pop('license')
        ct_model.version = m.pop('version')
        ct_model.user_defined_metadata.update({k: str(v) for k, v in m.items()})
        ct_model.save(str(f))
        return f, ct_model

    @try_export
    def export_engine(self, prefix=colorstr('TensorRT:')):
        """YOLOv8 TensorRT export https://developer.nvidia.com/tensorrt."""
        assert self.im.device.type != 'cpu', "export running on CPU but must be on GPU, i.e. use 'device=0'"
        try:
            import tensorrt as trt  # noqa
        except ImportError:
            if LINUX:
                check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
            import tensorrt as trt  # noqa

        check_version(trt.__version__, '7.0.0', hard=True)  # require tensorrt>=8.0.0
        self.args.simplify = True
        f_onnx, _ = self.export_onnx()

        LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
        assert Path(f_onnx).exists(), f'failed to export ONNX file: {f_onnx}'
        f = self.file.with_suffix('.engine')  # TensorRT engine file
        logger = trt.Logger(trt.Logger.INFO)
        if self.args.verbose:
            logger.min_severity = trt.Logger.Severity.VERBOSE

        builder = trt.Builder(logger)
        config = builder.create_builder_config()
        config.max_workspace_size = self.args.workspace * 1 << 30
        # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30)  # fix TRT 8.4 deprecation notice

        flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
        network = builder.create_network(flag)
        parser = trt.OnnxParser(network, logger)
        if not parser.parse_from_file(f_onnx):
            raise RuntimeError(f'failed to load ONNX file: {f_onnx}')

        inputs = [network.get_input(i) for i in range(network.num_inputs)]
        outputs = [network.get_output(i) for i in range(network.num_outputs)]
        for inp in inputs:
            LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
        for out in outputs:
            LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')

        if self.args.dynamic:
            shape = self.im.shape
            if shape[0] <= 1:
                LOGGER.warning(f'{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument')
            profile = builder.create_optimization_profile()
            for inp in inputs:
                profile.set_shape(inp.name, (1, *shape[1:]), (max(1, shape[0] // 2), *shape[1:]), shape)
            config.add_optimization_profile(profile)

        LOGGER.info(
            f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and self.args.half else 32} engine as {f}')
        if builder.platform_has_fast_fp16 and self.args.half:
            config.set_flag(trt.BuilderFlag.FP16)

        # Write file
        with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
            # Metadata
            meta = json.dumps(self.metadata)
            t.write(len(meta).to_bytes(4, byteorder='little', signed=True))
            t.write(meta.encode())
            # Model
            t.write(engine.serialize())

        return f, None

    @try_export
    def export_saved_model(self, prefix=colorstr('TensorFlow SavedModel:')):
        """YOLOv8 TensorFlow SavedModel export."""
        try:
            import tensorflow as tf  # noqa
        except ImportError:
            cuda = torch.cuda.is_available()
            check_requirements(f"tensorflow{'-macos' if MACOS else '-aarch64' if ARM64 else '' if cuda else '-cpu'}")
            import tensorflow as tf  # noqa
        check_requirements(('onnx', 'onnx2tf>=1.7.7', 'sng4onnx>=1.0.1', 'onnxsim>=0.4.17', 'onnx_graphsurgeon>=0.3.26',
                            'tflite_support', 'onnxruntime-gpu' if torch.cuda.is_available() else 'onnxruntime'),
                           cmds='--extra-index-url https://pypi.ngc.nvidia.com')

        LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
        f = Path(str(self.file).replace(self.file.suffix, '_saved_model'))
        if f.is_dir():
            import shutil
            shutil.rmtree(f)  # delete output folder

        # Export to ONNX
        self.args.simplify = True
        f_onnx, _ = self.export_onnx()

        # Export to TF
        int8 = '-oiqt -qt per-tensor' if self.args.int8 else ''
        cmd = f'onnx2tf -i {f_onnx} -o {f} -nuo --non_verbose {int8}'
        LOGGER.info(f"\n{prefix} running '{cmd.strip()}'")
        subprocess.run(cmd, shell=True)
        yaml_save(f / 'metadata.yaml', self.metadata)  # add metadata.yaml

        # Remove/rename TFLite models
        if self.args.int8:
            for file in f.rglob('*_dynamic_range_quant.tflite'):
                file.rename(file.with_stem(file.stem.replace('_dynamic_range_quant', '_int8')))
            for file in f.rglob('*_integer_quant_with_int16_act.tflite'):
                file.unlink()  # delete extra fp16 activation TFLite files

        # Add TFLite metadata
        for file in f.rglob('*.tflite'):
            f.unlink() if 'quant_with_int16_act.tflite' in str(f) else self._add_tflite_metadata(file)

        # Load saved_model
        keras_model = tf.saved_model.load(f, tags=None, options=None)

        return str(f), keras_model

    @try_export
    def export_pb(self, keras_model, prefix=colorstr('TensorFlow GraphDef:')):
        """YOLOv8 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow."""
        import tensorflow as tf  # noqa
        from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2  # noqa

        LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
        f = self.file.with_suffix('.pb')

        m = tf.function(lambda x: keras_model(x))  # full model
        m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
        frozen_func = convert_variables_to_constants_v2(m)
        frozen_func.graph.as_graph_def()
        tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
        return f, None

    @try_export
    def export_tflite(self, keras_model, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
        """YOLOv8 TensorFlow Lite export."""
        import tensorflow as tf  # noqa

        LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
        saved_model = Path(str(self.file).replace(self.file.suffix, '_saved_model'))
        if self.args.int8:
            f = saved_model / f'{self.file.stem}_int8.tflite'  # fp32 in/out
        elif self.args.half:
            f = saved_model / f'{self.file.stem}_float16.tflite'  # fp32 in/out
        else:
            f = saved_model / f'{self.file.stem}_float32.tflite'
        return str(f), None

    @try_export
    def export_edgetpu(self, tflite_model='', prefix=colorstr('Edge TPU:')):
        """YOLOv8 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/."""
        LOGGER.warning(f'{prefix} WARNING ⚠️ Edge TPU known bug https://github.com/ultralytics/ultralytics/issues/1185')

        cmd = 'edgetpu_compiler --version'
        help_url = 'https://coral.ai/docs/edgetpu/compiler/'
        assert LINUX, f'export only supported on Linux. See {help_url}'
        if subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, shell=True).returncode != 0:
            LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
            sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0  # sudo installed on system
            for c in (
                    'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
                    'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
                    'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
                subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
        ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]

        LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
        f = str(tflite_model).replace('.tflite', '_edgetpu.tflite')  # Edge TPU model

        cmd = f'edgetpu_compiler -s -d -k 10 --out_dir {Path(f).parent} {tflite_model}'
        LOGGER.info(f"{prefix} running '{cmd}'")
        subprocess.run(cmd.split(), check=True)
        self._add_tflite_metadata(f)
        return f, None

    @try_export
    def export_tfjs(self, prefix=colorstr('TensorFlow.js:')):
        """YOLOv8 TensorFlow.js export."""
        check_requirements('tensorflowjs')
        import tensorflow as tf
        import tensorflowjs as tfjs  # noqa

        LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
        f = str(self.file).replace(self.file.suffix, '_web_model')  # js dir
        f_pb = self.file.with_suffix('.pb')  # *.pb path

        gd = tf.Graph().as_graph_def()  # TF GraphDef
        with open(f_pb, 'rb') as file:
            gd.ParseFromString(file.read())
        outputs = ','.join(gd_outputs(gd))
        LOGGER.info(f'\n{prefix} output node names: {outputs}')

        cmd = f'tensorflowjs_converter --input_format=tf_frozen_model --output_node_names={outputs} {f_pb} {f}'
        subprocess.run(cmd.split(), check=True)

        # f_json = Path(f) / 'model.json'  # *.json path
        # with open(f_json, 'w') as j:  # sort JSON Identity_* in ascending order
        #     subst = re.sub(
        #         r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
        #         r'"Identity.?.?": {"name": "Identity.?.?"}, '
        #         r'"Identity.?.?": {"name": "Identity.?.?"}, '
        #         r'"Identity.?.?": {"name": "Identity.?.?"}}}',
        #         r'{"outputs": {"Identity": {"name": "Identity"}, '
        #         r'"Identity_1": {"name": "Identity_1"}, '
        #         r'"Identity_2": {"name": "Identity_2"}, '
        #         r'"Identity_3": {"name": "Identity_3"}}}',
        #         f_json.read_text(),
        #     )
        #     j.write(subst)
        yaml_save(Path(f) / 'metadata.yaml', self.metadata)  # add metadata.yaml
        return f, None

    def _add_tflite_metadata(self, file):
        """Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata."""
        from tflite_support import flatbuffers  # noqa
        from tflite_support import metadata as _metadata  # noqa
        from tflite_support import metadata_schema_py_generated as _metadata_fb  # noqa

        # Create model info
        model_meta = _metadata_fb.ModelMetadataT()
        model_meta.name = self.metadata['description']
        model_meta.version = self.metadata['version']
        model_meta.author = self.metadata['author']
        model_meta.license = self.metadata['license']

        # Label file
        tmp_file = Path(file).parent / 'temp_meta.txt'
        with open(tmp_file, 'w') as f:
            f.write(str(self.metadata))

        label_file = _metadata_fb.AssociatedFileT()
        label_file.name = tmp_file.name
        label_file.type = _metadata_fb.AssociatedFileType.TENSOR_AXIS_LABELS

        # Create input info
        input_meta = _metadata_fb.TensorMetadataT()
        input_meta.name = 'image'
        input_meta.description = 'Input image to be detected.'
        input_meta.content = _metadata_fb.ContentT()
        input_meta.content.contentProperties = _metadata_fb.ImagePropertiesT()
        input_meta.content.contentProperties.colorSpace = _metadata_fb.ColorSpaceType.RGB
        input_meta.content.contentPropertiesType = _metadata_fb.ContentProperties.ImageProperties

        # Create output info
        output1 = _metadata_fb.TensorMetadataT()
        output1.name = 'output'
        output1.description = 'Coordinates of detected objects, class labels, and confidence score'
        output1.associatedFiles = [label_file]
        if self.model.task == 'segment':
            output2 = _metadata_fb.TensorMetadataT()
            output2.name = 'output'
            output2.description = 'Mask protos'
            output2.associatedFiles = [label_file]

        # Create subgraph info
        subgraph = _metadata_fb.SubGraphMetadataT()
        subgraph.inputTensorMetadata = [input_meta]
        subgraph.outputTensorMetadata = [output1, output2] if self.model.task == 'segment' else [output1]
        model_meta.subgraphMetadata = [subgraph]

        b = flatbuffers.Builder(0)
        b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
        metadata_buf = b.Output()

        populator = _metadata.MetadataPopulator.with_model_file(str(file))
        populator.load_metadata_buffer(metadata_buf)
        populator.load_associated_files([str(tmp_file)])
        populator.populate()
        tmp_file.unlink()

    def _pipeline_coreml(self, model, prefix=colorstr('CoreML Pipeline:')):
        """YOLOv8 CoreML pipeline."""
        import coremltools as ct  # noqa

        LOGGER.info(f'{prefix} starting pipeline with coremltools {ct.__version__}...')
        batch_size, ch, h, w = list(self.im.shape)  # BCHW

        # Output shapes
        spec = model.get_spec()
        out0, out1 = iter(spec.description.output)
        if MACOS:
            from PIL import Image
            img = Image.new('RGB', (w, h))  # img(192 width, 320 height)
            # img = torch.zeros((*opt.img_size, 3)).numpy()  # img size(320,192,3) iDetection
            out = model.predict({'image': img})
            out0_shape = out[out0.name].shape
            out1_shape = out[out1.name].shape
        else:  # linux and windows can not run model.predict(), get sizes from pytorch output y
            out0_shape = self.output_shape[2], self.output_shape[1] - 4  # (3780, 80)
            out1_shape = self.output_shape[2], 4  # (3780, 4)

        # Checks
        names = self.metadata['names']
        nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
        na, nc = out0_shape
        # na, nc = out0.type.multiArrayType.shape  # number anchors, classes
        assert len(names) == nc, f'{len(names)} names found for nc={nc}'  # check

        # Define output shapes (missing)
        out0.type.multiArrayType.shape[:] = out0_shape  # (3780, 80)
        out1.type.multiArrayType.shape[:] = out1_shape  # (3780, 4)
        # spec.neuralNetwork.preprocessing[0].featureName = '0'

        # Flexible input shapes
        # from coremltools.models.neural_network import flexible_shape_utils
        # s = [] # shapes
        # s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192))
        # s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384))  # (height, width)
        # flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s)
        # r = flexible_shape_utils.NeuralNetworkImageSizeRange()  # shape ranges
        # r.add_height_range((192, 640))
        # r.add_width_range((192, 640))
        # flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r)

        # Print
        # print(spec.description)

        # Model from spec
        model = ct.models.MLModel(spec)

        # 3. Create NMS protobuf
        nms_spec = ct.proto.Model_pb2.Model()
        nms_spec.specificationVersion = 5
        for i in range(2):
            decoder_output = model._spec.description.output[i].SerializeToString()
            nms_spec.description.input.add()
            nms_spec.description.input[i].ParseFromString(decoder_output)
            nms_spec.description.output.add()
            nms_spec.description.output[i].ParseFromString(decoder_output)

        nms_spec.description.output[0].name = 'confidence'
        nms_spec.description.output[1].name = 'coordinates'

        output_sizes = [nc, 4]
        for i in range(2):
            ma_type = nms_spec.description.output[i].type.multiArrayType
            ma_type.shapeRange.sizeRanges.add()
            ma_type.shapeRange.sizeRanges[0].lowerBound = 0
            ma_type.shapeRange.sizeRanges[0].upperBound = -1
            ma_type.shapeRange.sizeRanges.add()
            ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i]
            ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i]
            del ma_type.shape[:]

        nms = nms_spec.nonMaximumSuppression
        nms.confidenceInputFeatureName = out0.name  # 1x507x80
        nms.coordinatesInputFeatureName = out1.name  # 1x507x4
        nms.confidenceOutputFeatureName = 'confidence'
        nms.coordinatesOutputFeatureName = 'coordinates'
        nms.iouThresholdInputFeatureName = 'iouThreshold'
        nms.confidenceThresholdInputFeatureName = 'confidenceThreshold'
        nms.iouThreshold = 0.45
        nms.confidenceThreshold = 0.25
        nms.pickTop.perClass = True
        nms.stringClassLabels.vector.extend(names.values())
        nms_model = ct.models.MLModel(nms_spec)

        # 4. Pipeline models together
        pipeline = ct.models.pipeline.Pipeline(input_features=[('image', ct.models.datatypes.Array(3, ny, nx)),
                                                               ('iouThreshold', ct.models.datatypes.Double()),
                                                               ('confidenceThreshold', ct.models.datatypes.Double())],
                                               output_features=['confidence', 'coordinates'])
        pipeline.add_model(model)
        pipeline.add_model(nms_model)

        # Correct datatypes
        pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
        pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
        pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())

        # Update metadata
        pipeline.spec.specificationVersion = 5
        pipeline.spec.description.metadata.userDefined.update({
            'IoU threshold': str(nms.iouThreshold),
            'Confidence threshold': str(nms.confidenceThreshold)})

        # Save the model
        model = ct.models.MLModel(pipeline.spec)
        model.input_description['image'] = 'Input image'
        model.input_description['iouThreshold'] = f'(optional) IOU threshold override (default: {nms.iouThreshold})'
        model.input_description['confidenceThreshold'] = \
            f'(optional) Confidence threshold override (default: {nms.confidenceThreshold})'
        model.output_description['confidence'] = 'Boxes × Class confidence (see user-defined metadata "classes")'
        model.output_description['coordinates'] = 'Boxes × [x, y, width, height] (relative to image size)'
        LOGGER.info(f'{prefix} pipeline success')
        return model

    def add_callback(self, event: str, callback):
        """
        Appends the given callback.
        """
        self.callbacks[event].append(callback)

    def run_callbacks(self, event: str):
        """Execute all callbacks for a given event."""
        for callback in self.callbacks.get(event, []):
            callback(self)


class iOSDetectModel(torch.nn.Module):
    """Wrap an Ultralytics YOLO model for iOS export."""

    def __init__(self, model, im):
        """Initialize the iOSDetectModel class with a YOLO model and example image."""
        super().__init__()
        b, c, h, w = im.shape  # batch, channel, height, width
        self.model = model
        self.nc = len(model.names)  # number of classes
        if w == h:
            self.normalize = 1.0 / w  # scalar
        else:
            self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h])  # broadcast (slower, smaller)

    def forward(self, x):
        """Normalize predictions of object detection model with input size-dependent factors."""
        xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1)
        return cls, xywh * self.normalize  # confidence (3780, 80), coordinates (3780, 4)


def export(cfg=DEFAULT_CFG):
    """Export a YOLOv model to a specific format."""
    cfg.model = cfg.model or 'yolov8n.yaml'
    cfg.format = cfg.format or 'torchscript'

    from ultralytics import YOLO
    model = YOLO(cfg.model)
    model.export(**vars(cfg))


if __name__ == '__main__':
    """
    CLI:
    yolo mode=export model=yolov8n.yaml format=onnx
    """
    export()