|
|
|
from copy import copy |
|
|
|
import numpy as np |
|
|
|
from ultralytics.nn.tasks import DetectionModel |
|
from ultralytics.yolo import v8 |
|
from ultralytics.yolo.data import build_dataloader, build_yolo_dataset |
|
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader |
|
from ultralytics.yolo.engine.trainer import BaseTrainer |
|
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, colorstr |
|
from ultralytics.yolo.utils.plotting import plot_images, plot_labels, plot_results |
|
from ultralytics.yolo.utils.torch_utils import de_parallel, torch_distributed_zero_first |
|
|
|
|
|
|
|
class DetectionTrainer(BaseTrainer): |
|
|
|
def build_dataset(self, img_path, mode='train', batch=None): |
|
"""Build YOLO Dataset |
|
|
|
Args: |
|
img_path (str): Path to the folder containing images. |
|
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. |
|
batch (int, optional): Size of batches, this is for `rect`. Defaults to None. |
|
""" |
|
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32) |
|
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == 'val', stride=gs) |
|
|
|
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'): |
|
"""TODO: manage splits differently.""" |
|
|
|
if self.args.v5loader: |
|
LOGGER.warning("WARNING ⚠️ 'v5loader' feature is deprecated and will be removed soon. You can train using " |
|
'the default YOLOv8 dataloader instead, no argument is needed.') |
|
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32) |
|
return create_dataloader(path=dataset_path, |
|
imgsz=self.args.imgsz, |
|
batch_size=batch_size, |
|
stride=gs, |
|
hyp=vars(self.args), |
|
augment=mode == 'train', |
|
cache=self.args.cache, |
|
pad=0 if mode == 'train' else 0.5, |
|
rect=self.args.rect or mode == 'val', |
|
rank=rank, |
|
workers=self.args.workers, |
|
close_mosaic=self.args.close_mosaic != 0, |
|
prefix=colorstr(f'{mode}: '), |
|
shuffle=mode == 'train', |
|
seed=self.args.seed)[0] |
|
assert mode in ['train', 'val'] |
|
with torch_distributed_zero_first(rank): |
|
dataset = self.build_dataset(dataset_path, mode, batch_size) |
|
shuffle = mode == 'train' |
|
if getattr(dataset, 'rect', False) and shuffle: |
|
LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False") |
|
shuffle = False |
|
workers = self.args.workers if mode == 'train' else self.args.workers * 2 |
|
return build_dataloader(dataset, batch_size, workers, shuffle, rank) |
|
|
|
def preprocess_batch(self, batch): |
|
"""Preprocesses a batch of images by scaling and converting to float.""" |
|
batch['img'] = batch['img'].to(self.device, non_blocking=True).float() / 255 |
|
return batch |
|
|
|
def set_model_attributes(self): |
|
"""nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps).""" |
|
|
|
|
|
|
|
self.model.nc = self.data['nc'] |
|
self.model.names = self.data['names'] |
|
self.model.args = self.args |
|
|
|
|
|
def get_model(self, cfg=None, weights=None, verbose=True): |
|
"""Return a YOLO detection model.""" |
|
model = DetectionModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1) |
|
if weights: |
|
model.load(weights) |
|
return model |
|
|
|
def get_validator(self): |
|
"""Returns a DetectionValidator for YOLO model validation.""" |
|
self.loss_names = 'box_loss', 'cls_loss', 'dfl_loss' |
|
return v8.detect.DetectionValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args)) |
|
|
|
def label_loss_items(self, loss_items=None, prefix='train'): |
|
""" |
|
Returns a loss dict with labelled training loss items tensor |
|
""" |
|
|
|
keys = [f'{prefix}/{x}' for x in self.loss_names] |
|
if loss_items is not None: |
|
loss_items = [round(float(x), 5) for x in loss_items] |
|
return dict(zip(keys, loss_items)) |
|
else: |
|
return keys |
|
|
|
def progress_string(self): |
|
"""Returns a formatted string of training progress with epoch, GPU memory, loss, instances and size.""" |
|
return ('\n' + '%11s' * |
|
(4 + len(self.loss_names))) % ('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size') |
|
|
|
def plot_training_samples(self, batch, ni): |
|
"""Plots training samples with their annotations.""" |
|
plot_images(images=batch['img'], |
|
batch_idx=batch['batch_idx'], |
|
cls=batch['cls'].squeeze(-1), |
|
bboxes=batch['bboxes'], |
|
paths=batch['im_file'], |
|
fname=self.save_dir / f'train_batch{ni}.jpg', |
|
on_plot=self.on_plot) |
|
|
|
def plot_metrics(self): |
|
"""Plots metrics from a CSV file.""" |
|
plot_results(file=self.csv, on_plot=self.on_plot) |
|
|
|
def plot_training_labels(self): |
|
"""Create a labeled training plot of the YOLO model.""" |
|
boxes = np.concatenate([lb['bboxes'] for lb in self.train_loader.dataset.labels], 0) |
|
cls = np.concatenate([lb['cls'] for lb in self.train_loader.dataset.labels], 0) |
|
plot_labels(boxes, cls.squeeze(), names=self.data['names'], save_dir=self.save_dir, on_plot=self.on_plot) |
|
|
|
|
|
def train(cfg=DEFAULT_CFG, use_python=False): |
|
"""Train and optimize YOLO model given training data and device.""" |
|
model = cfg.model or 'yolov8n.pt' |
|
data = cfg.data or 'coco128.yaml' |
|
device = cfg.device if cfg.device is not None else '' |
|
|
|
args = dict(model=model, data=data, device=device) |
|
if use_python: |
|
from ultralytics import YOLO |
|
YOLO(model).train(**args) |
|
else: |
|
trainer = DetectionTrainer(overrides=args) |
|
trainer.train() |
|
|
|
|
|
if __name__ == '__main__': |
|
train() |
|
|