|
|
|
|
|
from ultralytics.yolo.engine.results import Results |
|
from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops |
|
from ultralytics.yolo.v8.detect.predict import DetectionPredictor |
|
|
|
|
|
class PosePredictor(DetectionPredictor): |
|
|
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): |
|
super().__init__(cfg, overrides, _callbacks) |
|
self.args.task = 'pose' |
|
|
|
def postprocess(self, preds, img, orig_imgs): |
|
"""Return detection results for a given input image or list of images.""" |
|
preds = ops.non_max_suppression(preds, |
|
self.args.conf, |
|
self.args.iou, |
|
agnostic=self.args.agnostic_nms, |
|
max_det=self.args.max_det, |
|
classes=self.args.classes, |
|
nc=len(self.model.names)) |
|
|
|
results = [] |
|
for i, pred in enumerate(preds): |
|
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs |
|
shape = orig_img.shape |
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round() |
|
pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:] |
|
pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, shape) |
|
path = self.batch[0] |
|
img_path = path[i] if isinstance(path, list) else path |
|
results.append( |
|
Results(orig_img=orig_img, |
|
path=img_path, |
|
names=self.model.names, |
|
boxes=pred[:, :6], |
|
keypoints=pred_kpts)) |
|
return results |
|
|
|
|
|
def predict(cfg=DEFAULT_CFG, use_python=False): |
|
"""Runs YOLO to predict objects in an image or video.""" |
|
model = cfg.model or 'yolov8n-pose.pt' |
|
source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \ |
|
else 'https://ultralytics.com/images/bus.jpg' |
|
|
|
args = dict(model=model, source=source) |
|
if use_python: |
|
from ultralytics import YOLO |
|
YOLO(model)(**args) |
|
else: |
|
predictor = PosePredictor(overrides=args) |
|
predictor.predict_cli() |
|
|
|
|
|
if __name__ == '__main__': |
|
predict() |
|
|