dfasd
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,10 @@ from langchain_core.runnables import RunnablePassthrough
|
|
9 |
from langchain_openai import ChatOpenAI
|
10 |
from langchain import hub
|
11 |
from langchain_core.output_parsers import StrOutputParser
|
12 |
-
|
|
|
|
|
|
|
13 |
# Load environment variables
|
14 |
load_dotenv()
|
15 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
@@ -18,61 +21,64 @@ OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
|
18 |
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
|
19 |
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
|
20 |
llm = ChatOpenAI(model="gpt-4-1106-preview", api_key=OPENAI_API_KEY)
|
21 |
-
vectordb_path = './vector_db'
|
22 |
|
23 |
-
|
24 |
-
uploaded_files = ['airbus.pdf', 'annualreport2223.pdf']
|
25 |
dbname = 'vector_db'
|
|
|
26 |
vectorstore = None
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
|
38 |
-
vectorstore.persist()
|
39 |
-
retriever = vectorstore.as_retriever()
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
print(prompt)
|
44 |
|
45 |
-
|
46 |
-
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
| StrOutputParser()
|
53 |
-
)
|
54 |
|
55 |
-
#
|
56 |
-
|
57 |
-
response = rag_chain.invoke({"input": query, "chat_history": chat_history})
|
58 |
-
return response
|
59 |
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
def chat(query, chat_history):
|
64 |
response = rag_bot(query, chat_history)
|
65 |
-
chat_history.append((query, response))
|
66 |
-
return
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
outputs=["chatbot", "state"],
|
72 |
-
title="RAG Chatbot Prototype",
|
73 |
-
description="A Chatbot using Retrieval-Augmented Generation (RAG) with PDF files.",
|
74 |
-
allow_flagging="never",
|
75 |
-
)
|
76 |
|
77 |
if __name__ == '__main__':
|
78 |
demo.launch(debug=True, share=True)
|
|
|
9 |
from langchain_openai import ChatOpenAI
|
10 |
from langchain import hub
|
11 |
from langchain_core.output_parsers import StrOutputParser
|
12 |
+
from langchain.chains import create_history_aware_retriever
|
13 |
+
from langchain.prompts import PromptTemplate
|
14 |
+
from langchain.chains.question_answering import load_qa_chain
|
15 |
+
import pydantic
|
16 |
# Load environment variables
|
17 |
load_dotenv()
|
18 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
|
|
21 |
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
|
22 |
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
|
23 |
llm = ChatOpenAI(model="gpt-4-1106-preview", api_key=OPENAI_API_KEY)
|
|
|
24 |
|
25 |
+
vectordb_path = './vector_db'
|
|
|
26 |
dbname = 'vector_db'
|
27 |
+
uploaded_files = ['airbus.pdf', 'annualreport2223.pdf']
|
28 |
vectorstore = None
|
29 |
|
30 |
+
def create_vectordb():
|
31 |
+
for file in uploaded_files:
|
32 |
+
loader = PyPDFLoader(file)
|
33 |
+
data = loader.load()
|
34 |
+
texts = text_splitter.split_documents(data)
|
35 |
|
36 |
+
if vectorstore is None:
|
37 |
+
vectorstore = Chroma.from_documents(documents=texts, embedding=embeddings, persist_directory=os.path.join(vectordb_path, dbname))
|
38 |
+
else:
|
39 |
+
vectorstore.add_documents(texts)
|
40 |
|
|
|
|
|
41 |
|
42 |
+
def rag_bot(query, chat_history):
|
43 |
+
print(f"Received query: {query}")
|
|
|
44 |
|
45 |
+
template = """Please answer to human's input based on context. If the input is not mentioned in context, output something like 'I don't know'.
|
46 |
+
Context: {context}
|
47 |
+
Human: {human_input}
|
48 |
+
Your Response as Chatbot:"""
|
49 |
|
50 |
+
prompt_s = PromptTemplate(
|
51 |
+
input_variables=["human_input", "context"],
|
52 |
+
template=template
|
53 |
+
)
|
|
|
|
|
54 |
|
55 |
+
# Initialize vector store
|
56 |
+
vectorstore = Chroma(persist_directory=os.path.join(vectordb_path), embedding_function=embeddings)
|
|
|
|
|
57 |
|
58 |
+
# prompt = hub.pull("langchain-ai/chat-langchain-rephrase")
|
59 |
+
|
60 |
+
docs = vectorstore.similarity_search(query)
|
61 |
+
|
62 |
+
try:
|
63 |
+
stuff_chain = load_qa_chain(llm, chain_type="stuff", prompt=prompt_s)
|
64 |
+
except pydantic.ValidationError as e:
|
65 |
+
print(f"Validation error: {e}")
|
66 |
+
|
67 |
+
output = stuff_chain({"input_documents": docs, "human_input": query}, return_only_outputs=False)
|
68 |
+
|
69 |
+
final_answer = output["output_text"]
|
70 |
+
print(f"Final Answer ---> {final_answer}")
|
71 |
+
|
72 |
+
return final_answer
|
73 |
|
74 |
def chat(query, chat_history):
|
75 |
response = rag_bot(query, chat_history)
|
76 |
+
# chat_history.append((query, response))
|
77 |
+
return response
|
78 |
+
|
79 |
+
chatbot = gr.Chatbot(avatar_images=["user.jpg", "bot.png"], height=600)
|
80 |
+
clear_but = gr.Button(value="Clear Chat")
|
81 |
+
demo = gr.ChatInterface(fn=chat, title="RAG Chatbot Prototype", multimodal=False, retry_btn=None, undo_btn=None, clear_btn=clear_but, chatbot=chatbot)
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
if __name__ == '__main__':
|
84 |
demo.launch(debug=True, share=True)
|