from dotenv import load_dotenv import os import gradio as gr from langchain_community.document_loaders import PyPDFLoader from langchain_text_splitters import CharacterTextSplitter from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import Chroma from langchain_core.runnables import RunnablePassthrough from langchain_openai import ChatOpenAI from langchain import hub from langchain_core.output_parsers import StrOutputParser # Load environment variables load_dotenv() OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") # Initialize components text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len) embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY) llm = ChatOpenAI(model="gpt-4-1106-preview", api_key=OPENAI_API_KEY) vectordb_path = './vector_db' # Load and process documents uploaded_files = ['airbus.pdf', 'annualreport2223.pdf'] dbname = 'vector_db' vectorstore = None for file in uploaded_files: loader = PyPDFLoader(file) data = loader.load() texts = text_splitter.split_documents(data) if vectorstore is None: vectorstore = Chroma.from_documents(documents=texts, embedding=embeddings, persist_directory=os.path.join(vectordb_path, dbname)) else: vectorstore.add_documents(texts) vectorstore.persist() retriever = vectorstore.as_retriever() # Load prompt template prompt = hub.pull("rlm/rag-prompt") print(prompt) def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) rag_chain = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) # Gradio interface def rag_bot(query, chat_history): response = rag_chain.invoke({"input": query, "chat_history": chat_history}) return response chatbot = gr.Chatbot(avatar_images=["user.jpg", "bot.png"], height=600) clear_but = gr.Button(value="Clear Chat") def chat(query, chat_history): response = rag_bot(query, chat_history) chat_history.append((query, response)) return chat_history, chat_history demo = gr.Interface( fn=chat, inputs=["text", "state"], outputs=["chatbot", "state"], title="RAG Chatbot Prototype", description="A Chatbot using Retrieval-Augmented Generation (RAG) with PDF files.", allow_flagging="never", ) if __name__ == '__main__': demo.launch(debug=True, share=True)