from dotenv import load_dotenv import os import gradio as gr from langchain_community.document_loaders import PyPDFLoader from langchain_text_splitters import CharacterTextSplitter from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import Chroma from langchain_core.runnables import RunnablePassthrough from langchain_openai import ChatOpenAI from langchain import hub from langchain_core.output_parsers import StrOutputParser from langchain.chains import create_history_aware_retriever from langchain.prompts import PromptTemplate from langchain.chains.question_answering import load_qa_chain import pydantic # Load environment variables load_dotenv() OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") # Initialize components text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len) embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY) llm = ChatOpenAI(model="gpt-4-1106-preview", api_key=OPENAI_API_KEY) vectordb_path = './vector_db' dbname = 'vector_db' uploaded_files = ['airbus.pdf', 'annualreport2223.pdf'] vectorstore = None def create_vectordb(): for file in uploaded_files: loader = PyPDFLoader(file) data = loader.load() texts = text_splitter.split_documents(data) if vectorstore is None: vectorstore = Chroma.from_documents(documents=texts, embedding=embeddings, persist_directory=os.path.join(vectordb_path, dbname)) else: vectorstore.add_documents(texts) def rag_bot(query, chat_history): print(f"Received query: {query}") template = """Please answer to human's input based on context. If the input is not mentioned in context, output something like 'I don't know'. Context: {context} Human: {human_input} Your Response as Chatbot:""" prompt_s = PromptTemplate( input_variables=["human_input", "context"], template=template ) # Initialize vector store vectorstore = Chroma(persist_directory=os.path.join(vectordb_path), embedding_function=embeddings) # prompt = hub.pull("langchain-ai/chat-langchain-rephrase") docs = vectorstore.similarity_search(query) try: stuff_chain = load_qa_chain(llm, chain_type="stuff", prompt=prompt_s) except pydantic.ValidationError as e: print(f"Validation error: {e}") output = stuff_chain({"input_documents": docs, "human_input": query}, return_only_outputs=False) final_answer = output["output_text"] print(f"Final Answer ---> {final_answer}") return final_answer def chat(query, chat_history): response = rag_bot(query, chat_history) # chat_history.append((query, response)) return response chatbot = gr.Chatbot(avatar_images=["user.jpg", "bot.png"], height=600) clear_but = gr.Button(value="Clear Chat") demo = gr.ChatInterface(fn=chat, title="RAG Chatbot Prototype", multimodal=False, retry_btn=None, undo_btn=None, clear_btn=clear_but, chatbot=chatbot) if __name__ == '__main__': demo.launch(debug=True, share=True)