walter1's picture
Update app.py
9d29d4f
raw
history blame
5.64 kB
import gradio as gr
import tensorflow as tf
import numpy as np
import pickle
import requests as rs
import pandas as pd
import json
import requests
import datetime
# Load model, including its weights and the optimizer
model = tf.keras.models.load_model('core4.h5')
# load tokenizer
with open('tokenizer.pickle', 'rb') as handle:
tokenize = pickle.load(handle)
text_labels = ['How to apply', 'how much can I get', 'who can apply']
# model.summary() # model architecture
def greet(string):
tokenizedText = tokenize.texts_to_matrix([string])
prediction = model.predict(np.array([tokenizedText[0]]))
predicted_label = text_labels[np.argmax(prediction)]
print(prediction[0][np.argmax(prediction)])
print("Predicted label: " + predicted_label + "\n")
###################
spreadsheet_id = '1vjWnYsnGc0J6snT67NVbA-NWSGZ5b0eDBVHmg9lbf9s' # Please set the Spreadsheet ID.
csv_url='https://docs.google.com/spreadsheets/d/' + spreadsheet_id + '/export?format=csv&id=' + spreadsheet_id + '&gid=0'
res=rs.get(url=csv_url)
open('google.csv', 'wb').write(res.content)
df = pd.read_csv('google.csv')
spreadsheet_id = '1vjWnYsnGc0J6snT67NVbA-NWSGZ5b0eDBVHmg9lbf9s' # Please set the Spreadsheet ID.
url = 'https://script.google.com/macros/s/AKfycbwXP5fsDgOXJ9biZQC293o6bTBL3kDOJ07PlmxKjabzdTej6WYdC8Yos6NpDVqAJeVM/exec?spreadsheetId=' + spreadsheet_id
body = {
"arguments": {"range": "Sheet1!A"+str(len(df)+2), "valueInputOption": "USER_ENTERED"},
"body": {"values": [[string]]}
}
res = requests.post(url, json.dumps(body), headers={'Content-Type': 'application/json'})
body = {
"arguments": {"range": "Sheet1!B"+str(len(df)+2), "valueInputOption": "USER_ENTERED"},
"body": {"values": [[predicted_label]]}
}
res = requests.post(url, json.dumps(body), headers={'Content-Type': 'application/json'})
current_time = datetime.datetime.now()
body = {
"arguments": {"range": "Sheet1!D"+str(len(df)+2), "valueInputOption": "USER_ENTERED"},
"body": {"values": [[str(current_time)]]}
}
res = requests.post(url, json.dumps(body), headers={'Content-Type': 'application/json'})
#print(res.text)
#######################
return predicted_label
#One testing case
###################################################
import gradio as gr
from transformers import pipeline
from datetime import datetime
import pandas as pd
import requests
from bs4 import BeautifulSoup
import re
benefits = [
{"benefitName": "Universal Credit", "coreName": "what is this benefit", "link": "https://www.gov.uk/universal-credit/"},
{"benefitName": "Universal Credit", "coreName": "who can apply", "link": "https://www.gov.uk/universal-credit/eligibility"},
{"benefitName": "Universal Credit", "coreName": "how much can I get", "link": "https://www.gov.uk/universal-credit/what-youll-get,https://www.gov.uk/universal-credit/how-youre-paid"},
{"benefitName": "Universal Credit", "coreName": "How to apply", "link": "https://www.gov.uk/universal-credit/how-to-claim"}
]
def requestPage(link):
page = requests.get(link)
# print(page.text)
soup = BeautifulSoup(page.content, "html.parser")
return soup
def scrapeTable(table):
columns = [col.text.strip() for col in table.thead.tr.find_all()]
columns
rows = table.tbody.find_all(recursive=False)
clean_rows = ""
for row in rows:
elements = ["{}: {}".format(columns[index], element.text.strip()) for index, element in enumerate(row.find_all(recursive=False))]
elements = " ".join(elements)
# print(elements)
clean_rows += elements + "\n"
return clean_rows
def scrapePage(page):
# Scrape the text
corpus = ""
# starting from the main page
content = page.find('div', {"id":"guide-contents"})
title = content.find('h1', {"class":"part-title"})
title = title.text.strip()
corpus += title +"\n\n"
print(title)
content = content.find('div', {"class":"gem-c-govspeak"})
fragments = content.find_all(recursive=False)
for frag in fragments:
text= frag.text.strip()
if frag.name == 'ul':
clean = re.sub('\n+', "{;}", text)
corpus += "{;}" + clean
elif frag.name == 'table':
corpus += scrapeTable(frag)
else:
corpus += text
corpus += "\n"
# print(corpus)
return corpus
for benefit in benefits:
links = benefit['link'].split(',')
print(benefit['benefitName'], benefit['coreName'], len(links))
context = ""
for link in links:
page = requestPage(link)
context += scrapePage(page)
benefit['context'] = context
benefit['contextLen'] = len(context)
print("--------------------------------")
benefitsClasses = list(set(list(map(lambda x: x['benefitName'], benefits))))
core4Classes = list(set(list(map(lambda x: x['coreName'], benefits))))
# contexts
benefitsClasses, core4Classes
question_answerer = pipeline("question-answering")
def testQA(question):
predictedBenefit = "Universal Credit"
coreName = greet(question)
predictedCore = coreName
time = datetime.now()
context = list(filter(lambda x: x['benefitName']==predictedBenefit and x['coreName']==predictedCore, benefits))[0]
answer = question_answerer(question = question, context = context['context'])['answer']
time3 = (datetime.now() - time).total_seconds()
body = {
"arguments": {"range": "Sheet1!C"+str(len(df)+2), "valueInputOption": "USER_ENTERED"},
"body": {"values": [[answer]]}
}
res = requests.post(url, json.dumps(body), headers={'Content-Type': 'application/json'})
output = coreName + ': ' + answer
return output
iface = gr.Interface(fn=testQA, inputs="text", outputs="text")
iface.launch()