Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,11 +2,14 @@ import gradio as gr
|
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
import pickle
|
5 |
-
import requests as rs
|
6 |
import pandas as pd
|
7 |
import json
|
8 |
-
import requests
|
9 |
import datetime
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
|
12 |
# Load model, including its weights and the optimizer
|
@@ -29,7 +32,7 @@ def greet(string):
|
|
29 |
spreadsheet_id = '1vjWnYsnGc0J6snT67NVbA-NWSGZ5b0eDBVHmg9lbf9s' # Please set the Spreadsheet ID.
|
30 |
csv_url='https://docs.google.com/spreadsheets/d/' + spreadsheet_id + '/export?format=csv&id=' + spreadsheet_id + '&gid=0'
|
31 |
|
32 |
-
res=
|
33 |
open('google.csv', 'wb').write(res.content)
|
34 |
df = pd.read_csv('google.csv')
|
35 |
|
@@ -62,13 +65,7 @@ def greet(string):
|
|
62 |
#One testing case
|
63 |
|
64 |
###################################################
|
65 |
-
|
66 |
-
from transformers import pipeline
|
67 |
-
from datetime import datetime
|
68 |
-
import pandas as pd
|
69 |
-
import requests
|
70 |
-
from bs4 import BeautifulSoup
|
71 |
-
import re
|
72 |
benefits = [
|
73 |
{"benefitName": "Universal Credit", "coreName": "what is this benefit", "link": "https://www.gov.uk/universal-credit/"},
|
74 |
{"benefitName": "Universal Credit", "coreName": "who can apply", "link": "https://www.gov.uk/universal-credit/eligibility"},
|
@@ -127,6 +124,7 @@ for benefit in benefits:
|
|
127 |
benefit['context'] = context
|
128 |
benefit['contextLen'] = len(context)
|
129 |
print("--------------------------------")
|
|
|
130 |
benefitsClasses = list(set(list(map(lambda x: x['benefitName'], benefits))))
|
131 |
core4Classes = list(set(list(map(lambda x: x['coreName'], benefits))))
|
132 |
# contexts
|
@@ -141,14 +139,8 @@ def testQA(question):
|
|
141 |
time = datetime.now()
|
142 |
context = list(filter(lambda x: x['benefitName']==predictedBenefit and x['coreName']==predictedCore, benefits))[0]
|
143 |
answer = question_answerer(question = question, context = context['context'])['answer']
|
144 |
-
|
145 |
-
|
146 |
time3 = (datetime.now() - time).total_seconds()
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
output = coreName + ': ' + answer
|
153 |
return output
|
154 |
|
|
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
import pickle
|
|
|
5 |
import pandas as pd
|
6 |
import json
|
|
|
7 |
import datetime
|
8 |
+
from datetime import datetime
|
9 |
+
from transformers import pipeline
|
10 |
+
import requests
|
11 |
+
from bs4 import BeautifulSoup
|
12 |
+
import re
|
13 |
|
14 |
|
15 |
# Load model, including its weights and the optimizer
|
|
|
32 |
spreadsheet_id = '1vjWnYsnGc0J6snT67NVbA-NWSGZ5b0eDBVHmg9lbf9s' # Please set the Spreadsheet ID.
|
33 |
csv_url='https://docs.google.com/spreadsheets/d/' + spreadsheet_id + '/export?format=csv&id=' + spreadsheet_id + '&gid=0'
|
34 |
|
35 |
+
res=requests.get(url=csv_url)
|
36 |
open('google.csv', 'wb').write(res.content)
|
37 |
df = pd.read_csv('google.csv')
|
38 |
|
|
|
65 |
#One testing case
|
66 |
|
67 |
###################################################
|
68 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
benefits = [
|
70 |
{"benefitName": "Universal Credit", "coreName": "what is this benefit", "link": "https://www.gov.uk/universal-credit/"},
|
71 |
{"benefitName": "Universal Credit", "coreName": "who can apply", "link": "https://www.gov.uk/universal-credit/eligibility"},
|
|
|
124 |
benefit['context'] = context
|
125 |
benefit['contextLen'] = len(context)
|
126 |
print("--------------------------------")
|
127 |
+
|
128 |
benefitsClasses = list(set(list(map(lambda x: x['benefitName'], benefits))))
|
129 |
core4Classes = list(set(list(map(lambda x: x['coreName'], benefits))))
|
130 |
# contexts
|
|
|
139 |
time = datetime.now()
|
140 |
context = list(filter(lambda x: x['benefitName']==predictedBenefit and x['coreName']==predictedCore, benefits))[0]
|
141 |
answer = question_answerer(question = question, context = context['context'])['answer']
|
|
|
|
|
142 |
time3 = (datetime.now() - time).total_seconds()
|
143 |
|
|
|
|
|
|
|
|
|
144 |
output = coreName + ': ' + answer
|
145 |
return output
|
146 |
|