walter1 commited on
Commit
2f0e888
·
1 Parent(s): 3008004

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -16
app.py CHANGED
@@ -2,11 +2,14 @@ import gradio as gr
2
  import tensorflow as tf
3
  import numpy as np
4
  import pickle
5
- import requests as rs
6
  import pandas as pd
7
  import json
8
- import requests
9
  import datetime
 
 
 
 
 
10
 
11
 
12
  # Load model, including its weights and the optimizer
@@ -29,7 +32,7 @@ def greet(string):
29
  spreadsheet_id = '1vjWnYsnGc0J6snT67NVbA-NWSGZ5b0eDBVHmg9lbf9s' # Please set the Spreadsheet ID.
30
  csv_url='https://docs.google.com/spreadsheets/d/' + spreadsheet_id + '/export?format=csv&id=' + spreadsheet_id + '&gid=0'
31
 
32
- res=rs.get(url=csv_url)
33
  open('google.csv', 'wb').write(res.content)
34
  df = pd.read_csv('google.csv')
35
 
@@ -62,13 +65,7 @@ def greet(string):
62
  #One testing case
63
 
64
  ###################################################
65
- import gradio as gr
66
- from transformers import pipeline
67
- from datetime import datetime
68
- import pandas as pd
69
- import requests
70
- from bs4 import BeautifulSoup
71
- import re
72
  benefits = [
73
  {"benefitName": "Universal Credit", "coreName": "what is this benefit", "link": "https://www.gov.uk/universal-credit/"},
74
  {"benefitName": "Universal Credit", "coreName": "who can apply", "link": "https://www.gov.uk/universal-credit/eligibility"},
@@ -127,6 +124,7 @@ for benefit in benefits:
127
  benefit['context'] = context
128
  benefit['contextLen'] = len(context)
129
  print("--------------------------------")
 
130
  benefitsClasses = list(set(list(map(lambda x: x['benefitName'], benefits))))
131
  core4Classes = list(set(list(map(lambda x: x['coreName'], benefits))))
132
  # contexts
@@ -141,14 +139,8 @@ def testQA(question):
141
  time = datetime.now()
142
  context = list(filter(lambda x: x['benefitName']==predictedBenefit and x['coreName']==predictedCore, benefits))[0]
143
  answer = question_answerer(question = question, context = context['context'])['answer']
144
-
145
-
146
  time3 = (datetime.now() - time).total_seconds()
147
 
148
-
149
-
150
-
151
-
152
  output = coreName + ': ' + answer
153
  return output
154
 
 
2
  import tensorflow as tf
3
  import numpy as np
4
  import pickle
 
5
  import pandas as pd
6
  import json
 
7
  import datetime
8
+ from datetime import datetime
9
+ from transformers import pipeline
10
+ import requests
11
+ from bs4 import BeautifulSoup
12
+ import re
13
 
14
 
15
  # Load model, including its weights and the optimizer
 
32
  spreadsheet_id = '1vjWnYsnGc0J6snT67NVbA-NWSGZ5b0eDBVHmg9lbf9s' # Please set the Spreadsheet ID.
33
  csv_url='https://docs.google.com/spreadsheets/d/' + spreadsheet_id + '/export?format=csv&id=' + spreadsheet_id + '&gid=0'
34
 
35
+ res=requests.get(url=csv_url)
36
  open('google.csv', 'wb').write(res.content)
37
  df = pd.read_csv('google.csv')
38
 
 
65
  #One testing case
66
 
67
  ###################################################
68
+
 
 
 
 
 
 
69
  benefits = [
70
  {"benefitName": "Universal Credit", "coreName": "what is this benefit", "link": "https://www.gov.uk/universal-credit/"},
71
  {"benefitName": "Universal Credit", "coreName": "who can apply", "link": "https://www.gov.uk/universal-credit/eligibility"},
 
124
  benefit['context'] = context
125
  benefit['contextLen'] = len(context)
126
  print("--------------------------------")
127
+
128
  benefitsClasses = list(set(list(map(lambda x: x['benefitName'], benefits))))
129
  core4Classes = list(set(list(map(lambda x: x['coreName'], benefits))))
130
  # contexts
 
139
  time = datetime.now()
140
  context = list(filter(lambda x: x['benefitName']==predictedBenefit and x['coreName']==predictedCore, benefits))[0]
141
  answer = question_answerer(question = question, context = context['context'])['answer']
 
 
142
  time3 = (datetime.now() - time).total_seconds()
143
 
 
 
 
 
144
  output = coreName + ': ' + answer
145
  return output
146