QA_testing / app.py
walter1's picture
Update app.py
f225398
raw
history blame
2.67 kB
import gradio as gr
from transformers import pipeline
from datetime import datetime
import pandas as pd
import requests
from bs4 import BeautifulSoup
import re
benefits = [
{"benefitName": "Universal Credit", "coreName": "Overview", "link": "https://www.gov.uk/universal-credit/"},
{"benefitName": "Universal Credit", "coreName": "Eligibility", "link": "https://www.gov.uk/universal-credit/eligibility"},
{"benefitName": "Universal Credit", "coreName": "how much can I get​", "link": "https://www.gov.uk/universal-credit/what-youll-get,https://www.gov.uk/universal-credit/how-youre-paid"},
{"benefitName": "Universal Credit", "coreName": "how to apply/claim", "link": "https://www.gov.uk/universal-credit/how-to-claim"},
]
def requestPage(link):
page = requests.get(link)
# print(page.text)
soup = BeautifulSoup(page.content, "html.parser")
return soup
def scrapeTable(table):
columns = [col.text.strip() for col in table.thead.tr.find_all()]
columns
rows = table.tbody.find_all(recursive=False)
clean_rows = ""
for row in rows:
elements = ["{}: {}".format(columns[index], element.text.strip()) for index, element in enumerate(row.find_all(recursive=False))]
elements = " ".join(elements)
# print(elements)
clean_rows += elements + "\n"
return clean_rows
def scrapePage(page):
# Scrape the text
corpus = ""
# starting from the main page
content = page.find('div', {"id":"guide-contents"})
title = content.find('h1', {"class":"part-title"})
title = title.text.strip()
corpus += title +"\n\n"
print(title)
content = content.find('div', {"class":"gem-c-govspeak"})
fragments = content.find_all(recursive=False)
for frag in fragments:
text= frag.text.strip()
if frag.name == 'ul':
clean = re.sub('\n+', "{;}", text)
corpus += "{;}" + clean
elif frag.name == 'table':
corpus += scrapeTable(frag)
else:
corpus += text
corpus += "\n"
# print(corpus)
return corpus
for benefit in benefits:
links = benefit['link'].split(',')
print(benefit['benefitName'], benefit['coreName'], len(links))
context = ""
for link in links:
page = requestPage(link)
context += scrapePage(page)
benefit['context'] = context
benefit['contextLen'] = len(context)
print("--------------------------------")
benefitsClasses = list(set(list(map(lambda x: x['benefitName'], benefits))))
core4Classes = list(set(list(map(lambda x: x['coreName'], benefits))))
# contexts
benefitsClasses, core4Classes
#question_answerer = pipeline("question-answering")
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()