Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
# Load the model using Transformers' pipeline.
|
| 7 |
+
print("Loading model...")
|
| 8 |
+
model_pipeline = pipeline('token-classification', 'openfoodfacts/nutrition-extractor')
|
| 9 |
+
print("Model loaded successfully.")
|
| 10 |
+
|
| 11 |
+
def predict(image: Image.Image):
|
| 12 |
+
"""
|
| 13 |
+
Receives an image, passes it directly to the nutrition extraction model,
|
| 14 |
+
and processes the token-classification output to aggregate nutritional values.
|
| 15 |
+
Assumes the model performs OCR internally.
|
| 16 |
+
"""
|
| 17 |
+
# Directly pass the image to the model pipeline.
|
| 18 |
+
results = model_pipeline(image)
|
| 19 |
+
|
| 20 |
+
# Process the output: aggregate numeric values for each entity label.
|
| 21 |
+
extracted_data = {}
|
| 22 |
+
for item in results:
|
| 23 |
+
# Expected structure: {'word': '100', 'entity': 'CALORIES', 'score': 0.98, ...}
|
| 24 |
+
label = item.get('entity', 'O').lower()
|
| 25 |
+
if label != 'o': # Skip non-entity tokens.
|
| 26 |
+
token_text = item.get('word', '')
|
| 27 |
+
# Extract digits and decimal point.
|
| 28 |
+
num_str = "".join(filter(lambda c: c.isdigit() or c == '.', token_text))
|
| 29 |
+
try:
|
| 30 |
+
value = float(num_str)
|
| 31 |
+
extracted_data[label] = extracted_data.get(label, 0) + value
|
| 32 |
+
except ValueError:
|
| 33 |
+
continue
|
| 34 |
+
|
| 35 |
+
if not extracted_data:
|
| 36 |
+
return {"error": "No nutritional information extracted."}
|
| 37 |
+
return extracted_data
|
| 38 |
+
|
| 39 |
+
# Create a Gradio interface that exposes the API.
|
| 40 |
+
demo = gr.Interface(
|
| 41 |
+
fn=predict,
|
| 42 |
+
inputs=gr.Image(type="pil"),
|
| 43 |
+
outputs="json",
|
| 44 |
+
title="Nutrition Extractor API",
|
| 45 |
+
description="Upload an image of a nutrition table to extract nutritional values. The model performs OCR internally."
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
if __name__ == "__main__":
|
| 49 |
+
demo.launch()
|