Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,42 @@
|
|
1 |
import gradio as gr
|
2 |
-
import spaces
|
3 |
import torch
|
4 |
import os
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
torch.set_default_device('cuda')
|
7 |
|
|
|
8 |
|
9 |
-
|
10 |
-
def __init__(self):
|
11 |
-
super(LinearModel, self).__init__()
|
12 |
-
self.linear = torch.nn.Linear(1, 1, device='cuda')
|
13 |
|
14 |
-
|
15 |
-
out = self.linear(x)
|
16 |
-
print('weight device: ' + str(self.linear.weight.device))
|
17 |
-
return out
|
18 |
|
19 |
|
20 |
-
def
|
21 |
-
print(f'\n===process step {n}')
|
22 |
-
print('cuda visible devices: ' + str(os.getenv('CUDA_VISIBLE_DEVICES')))
|
23 |
print('cuda avaliable: ' + str(torch.cuda.is_available()))
|
24 |
-
print('
|
|
|
|
|
25 |
|
26 |
-
model = LinearModel().cuda()
|
27 |
-
x = torch.ones(1, device='cuda')
|
28 |
-
y = model(x)
|
29 |
|
30 |
-
|
31 |
-
print(x)
|
32 |
-
print(y)
|
33 |
|
34 |
|
35 |
@spaces.GPU
|
36 |
def greet(n):
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
def func(n):
|
42 |
-
# step1, on cpu
|
43 |
-
process(1)
|
44 |
-
|
45 |
-
# step2, on gpu
|
46 |
-
res = greet(n)
|
47 |
-
|
48 |
-
# step3, on cpu
|
49 |
-
process(3)
|
50 |
-
|
51 |
-
return res
|
52 |
|
53 |
|
54 |
-
gr.Interface(fn=
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces # 导入spaces时会应用torch补丁
|
3 |
import torch
|
4 |
import os
|
5 |
|
6 |
+
spaces.zero.torch.unpatch() # 手动调用解除torch补丁方法
|
7 |
+
|
8 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = 'MIG-2f70e35e-577e-52c1-9054-bc9f9d04054e'
|
9 |
+
|
10 |
+
print('cuda visible devices: ' + str(os.getenv('CUDA_VISIBLE_DEVICES')))
|
11 |
+
print('cuda avaliable: ' + str(torch.cuda.is_available()))
|
12 |
+
print('cuda device count: ' + str(torch.cuda.device_count()))
|
13 |
+
print('cuda device name: ' + str(torch.cuda.get_device_name()))
|
14 |
+
print('cuda device capability: ' + str(torch.cuda.get_device_capability()))
|
15 |
+
|
16 |
torch.set_default_device('cuda')
|
17 |
|
18 |
+
zero = torch.Tensor([0]).cuda()
|
19 |
|
20 |
+
one = torch.ones(2, 2, device='cuda')
|
|
|
|
|
|
|
21 |
|
22 |
+
two = torch.matmul(one, one).cuda()
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
+
def print_device():
|
|
|
|
|
26 |
print('cuda avaliable: ' + str(torch.cuda.is_available()))
|
27 |
+
print('zero device: ' + str(zero.device))
|
28 |
+
print('one device: ' + str(one.device))
|
29 |
+
print('two device: ' + str(two.device))
|
30 |
|
|
|
|
|
|
|
31 |
|
32 |
+
print_device() # cpu
|
|
|
|
|
33 |
|
34 |
|
35 |
@spaces.GPU
|
36 |
def greet(n):
|
37 |
+
print('on zero gpu')
|
38 |
+
print_device() # cuda
|
39 |
+
return f"Hello {zero + n} Tensor"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
|
42 |
+
gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text()).launch()
|