Spaces:
Runtime error
Runtime error
import torch | |
import streamlit as st | |
from transformers import RobertaTokenizer, RobertaForSequenceClassification | |
import re | |
import string | |
def tokenize_sentences(sentence): | |
encoded_dict = tokenizer.encode_plus( | |
sentence, | |
add_special_tokens=True, | |
max_length=128, | |
padding='max_length', | |
truncation=True, | |
return_attention_mask=True, | |
return_tensors='pt' | |
) | |
return torch.cat([encoded_dict['input_ids']], dim=0), torch.cat([encoded_dict['attention_mask']], dim=0) | |
def preprocess_query(query): | |
query = str(query).lower() | |
query = query.strip() | |
query=query.translate(str.maketrans("", "", string.punctuation)) | |
return query | |
def predict_aspects(sentence, threshold): | |
input_ids, attention_mask = tokenize_sentences(sentence) | |
with torch.no_grad(): | |
outputs = aspects_model(input_ids, attention_mask=attention_mask) | |
logits = outputs.logits | |
predicted_aspects = torch.sigmoid(logits).squeeze().tolist() | |
results = dict() | |
for label, prediction in zip(LABEL_COLUMNS_ASPECTS, predicted_aspects): | |
if prediction < threshold: | |
continue | |
precentage = round(float(prediction) * 100, 2) | |
results[label] = precentage | |
return results | |
# Load tokenizer and model | |
BERT_MODEL_NAME_FOR_ASPECTS_CLASSIFICATION = 'roberta-large' | |
tokenizer = RobertaTokenizer.from_pretrained(BERT_MODEL_NAME_FOR_ASPECTS_CLASSIFICATION, do_lower_case=True) | |
LABEL_COLUMNS_ASPECTS = ['FOOD-CUISINE', 'FOOD-DEALS', 'FOOD-DIET_OPTION', 'FOOD-EXPERIENCE', 'FOOD-FLAVOR', 'FOOD-GENERAL', 'FOOD-INGREDIENT', 'FOOD-KITCHEN', 'FOOD-MEAL', 'FOOD-MENU', 'FOOD-PORTION', 'FOOD-PRESENTATION', 'FOOD-PRICE', 'FOOD-QUALITY', 'FOOD-RECOMMENDATION', 'FOOD-TASTE', 'GENERAL-GENERAL', 'RESTAURANT-ATMOSPHERE', 'RESTAURANT-BUILDING', 'RESTAURANT-DECORATION', 'RESTAURANT-EXPERIENCE', 'RESTAURANT-FEATURES', 'RESTAURANT-GENERAL', 'RESTAURANT-HYGIENE', 'RESTAURANT-KITCHEN', 'RESTAURANT-LOCATION', 'RESTAURANT-OPTIONS', 'RESTAURANT-RECOMMENDATION', 'RESTAURANT-SEATING_PLAN', 'RESTAURANT-VIEW', 'SERVICE-BEHAVIOUR', 'SERVICE-EXPERIENCE', 'SERVICE-GENERAL', 'SERVICE-WAIT_TIME'] | |
aspects_model = RobertaForSequenceClassification.from_pretrained(BERT_MODEL_NAME_FOR_ASPECTS_CLASSIFICATION, num_labels=len(LABEL_COLUMNS_ASPECTS)) | |
aspects_model.load_state_dict(torch.load('./Aspects_Extraction_Model_updated.pth', map_location=torch.device('cpu')), strict=False) | |
aspects_model.eval() | |
# Streamlit App | |
st.title("Implicit and Explicit Aspect Extraction") | |
sentence = st.text_input("Enter a sentence:") | |
threshold = st.slider("Threshold", min_value=0.0, max_value=1.0, step=0.01, value=0.5) | |
if sentence: | |
processed_sentence = preprocess_query(sentence) | |
results = predict_aspects(processed_sentence, threshold) | |
if len(results) > 0: | |
st.write("Predicted Aspects:") | |
table_data = [["Category","Aspect", "Probability"]] | |
for aspect, percentage in results.items(): | |
aspect_parts = aspect.split("-") | |
table_data.append(aspect_parts + [f"{percentage}%"]) | |
st.table(table_data) | |
else: | |
st.write("No aspects above the threshold.") | |