File size: 9,742 Bytes
5285b72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33fb39c
5285b72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33fb39c
5285b72
 
 
33fb39c
5285b72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import asyncio
import json
from annotated_types import Len
import structlog
from typing import Optional
from openai.types.chat import ChatCompletionMessageParam
from pydantic import BaseModel, Field, validator
from typing_extensions import Annotated, AsyncGenerator, Iterable, Unpack
from ariadne import ObjectType, SubscriptionType
from graphql import GraphQLResolveInfo
from vespa.application import Vespa
from vespa.io import VespaQueryResponse
from openai import AsyncOpenAI

from .data import questions as data_questions, shot_user, shot_assistant
from .cache import cache_questions, cache_generate_summary
from .settings import VESPA_APP_URL, OPENAI_API_KEY
from .generated.schema_types import (
    Answer,
    AnswersParams,
    AnswersQueryResult,
    GenerateSummaryParams,
    GenerateSummarySubscriptionResult,
    Question,
    QuestionsParams,
    QuestionsQueryResult,
)


clientVespa = Vespa(url=VESPA_APP_URL)
clientOpenAI = AsyncOpenAI(
    api_key=str(OPENAI_API_KEY),
)
logger = structlog.get_logger("qa")
query = ObjectType("Query")


class QaFieldModel(BaseModel):
    sddocname: str
    documentid: str
    doc_id: str
    category_major: Optional[str] = None
    category_medium: Optional[str] = None
    category_minor: Optional[str] = None
    question: str
    answer: str


class QaModel(BaseModel):
    id: str
    relevance: float
    source: str
    fields: QaFieldModel


class AnswersParamsModel(BaseModel):
    query: Optional[str] = Field(strict=True, max_length=1024)


@query.field("answers")
async def resolve_answer(
    _, info: GraphQLResolveInfo, **params: Unpack[AnswersParams]
) -> AnswersQueryResult:
    assert info is not None, "Prevent type check error"

    params_parsed = AnswersParamsModel.model_validate(params, strict=True)
    answers: list[Answer] = []

    query = params_parsed.query
    if not query:
        logger.warning("Query is empty", params=params_parsed)
        return {"answers": answers}
    query_parsed = (
        query.replace("\\", "\\\\")
        .replace('"', '\\"')
        .replace(":", "\\:")
        .replace(")", "\\)")
    )

    base = "select * from qa where"
    anno = "{targetHits:100,approximate:false}"
    cond01 = f"({anno}nearestNeighbor(answer_embedding_me5s, q))"
    cond02 = f"({anno}nearestNeighbor(question_embedding_me5s, q))"

    async with clientVespa.asyncio() as sess:
        res: VespaQueryResponse = await sess.query(
            yql=f"{base} {cond01} or {cond02}",
            lang="ja",
            hits=20,
            ranking="semantic",
            body={
                "input.query(q)": f'embed(multilingual-e5-small, "query: {query_parsed}")',
            },
        )
        if not res.is_successful():
            logger.warning("Vespa query failed", json=res.json, status=res.status_code)
            return {"answers": answers}

        hits = [QaModel.model_validate(hit, strict=True) for hit in res.hits]
        answers = [
            Answer(
                id=hit.fields.doc_id,
                docId=hit.fields.doc_id,
                categoryMajor=hit.fields.category_major,
                categoryMedium=hit.fields.category_medium,
                categoryMinor=hit.fields.category_minor,
                question=hit.fields.question,
                answer=hit.fields.answer,
                score=hit.relevance,
            )
            for hit in hits
        ]

    return {"answers": answers}


class QuestionsParamsModel(BaseModel):
    query: Optional[str] = Field(strict=True, max_length=1024)


@query.field("questions")
async def resolve_question(
    _, info: GraphQLResolveInfo, **params: Unpack[QuestionsParams]
) -> QuestionsQueryResult:
    assert info is not None, "Prevent type check error"

    params_parsed = QuestionsParamsModel.model_validate(params, strict=True)
    questions: list[Question] = data_questions

    query = params_parsed.query
    if not query:
        logger.warning("Query is empty", params=params_parsed)
        return {"questions": questions}
    query_parsed = (
        query.replace("\\", "\\\\")
        .replace('"', '\\"')
        .replace(":", "\\:")
        .replace(")", "\\)")
    )

    cached_questions = await cache_questions.get(query)
    if isinstance(cached_questions, list):
        return {"questions": cached_questions}

    base = "select * from qa where"
    anno = "{targetHits:100,approximate:false}"
    cond01 = "({targetHits:100}userInput(@condQuery))"
    cond02 = f"({anno}nearestNeighbor(question_embedding_me5s, q))"

    async with clientVespa.asyncio() as sess:
        res: VespaQueryResponse = await sess.query(
            yql=f"{base} {cond01} or {cond02}",
            lang="ja",
            hits=20,
            ranking="question_semantic",
            body={
                "condQuery": query,
                "input.query(q)": f'embed(multilingual-e5-small, "query: {query_parsed}")',
            },
        )
        if not res.is_successful():
            logger.warning("Vespa query failed", json=res.json, status=res.status_code)
            return {"questions": questions}

        hits = [QaModel.model_validate(hit, strict=True) for hit in res.hits]
        questions = [
            Question(
                id=hit.fields.doc_id,
                docId=hit.fields.doc_id,
                categoryMajor=hit.fields.category_major,
                categoryMedium=hit.fields.category_medium,
                categoryMinor=hit.fields.category_minor,
                question=hit.fields.question,
            )
            for hit in hits
        ]

    await cache_questions.set(query, questions)
    return {"questions": questions}


subscription = SubscriptionType()


class GenerateSummaryParamsModel(BaseModel):
    query: str = Field(strict=True, max_length=1024)
    docIds: Annotated[list[str], Len(max_length=10)]

    @validator("docIds", each_item=True)
    def check_max_length(cls, v):
        if len(v) > 1024:
            raise ValueError("string length exceeds maximum of 1024")
        return v


@subscription.source("generateSummary")
async def generate_generate_summary(
    _, info: GraphQLResolveInfo, **params: Unpack[GenerateSummaryParams]
) -> AsyncGenerator[str, str]:
    assert info is not None, "Prevent type check error"

    params_parsed = GenerateSummaryParamsModel.model_validate(params, strict=True)
    if not params_parsed.query:
        logger.warning("No query found", params=params_parsed)
        return

    doc_ids = params_parsed.docIds or []
    if not doc_ids:
        logger.warning("No docIds found", params=params_parsed)
        return

    key = params_parsed.query + "|" + "|".join(sorted(doc_ids))
    cached_summary = await cache_generate_summary.get(key)
    if isinstance(cached_summary, str):
        for char in cached_summary:
            yield char
            await asyncio.sleep(0.05)
        return

    query_in = ", ".join(
        ['"' + x.replace("\\", "\\\\").replace('"', '\\"') + '"' for x in doc_ids]
    )
    answers = []
    async with clientVespa.asyncio() as sess:
        res: VespaQueryResponse = await sess.query(
            yql=f"select * from qa where doc_id in ({query_in})",
            lang="ja",
            hits=5,
        )
        if not res.is_successful():
            logger.warning("Vespa query failed", json=res.json, status=res.status_code)
            return

        hits = [QaModel.model_validate(hit, strict=True) for hit in res.hits]
        answers = [
            {
                "docId": hit.fields.doc_id,
                "answer": hit.fields.answer,
                "score": hit.relevance,
            }
            for hit in hits
        ]

    if not answers:
        logger.warning("No answers found", params=params_parsed)
        return

    system = """ใ‚ใชใŸใซใฏ่ณชๅ•(question)ใจๅ‚่€ƒ่ณ‡ๆ–™(references)ใŒไธŽใˆใ‚‰ใ‚Œใพใ™ใ€‚
ใ‚ใชใŸใฎไป•ไบ‹ใฏไปฅไธ‹ใฎ2ใคใงใ™ใ€‚

- ไธŽใˆใ‚‰ใ‚ŒใŸๅ‚่€ƒ่ณ‡ๆ–™ใซใ‹ใ‹ใ‚Œใฆใ„ใ‚‹ๆƒ…ๅ ฑใฎใฟใ‚’ไฝฟใฃใฆ่ณชๅ•ใซๅ›ž็ญ”ใ™ใ‚‹ใ€‚
- ๅ‚่€ƒ่ณ‡ๆ–™ใฎ่ฆ็ด„ใ‚’ใ‚ใ‹ใ‚Šใ‚„ใ™ใใพใจใ‚ใ‚‹ใ€‚

ไปฅไธ‹ใฎใƒซใƒผใƒซใซๅพ“ใฃใฆใใ ใ•ใ„:

- ๅ›ž็ญ”ใซใฏๅ‚่€ƒ่ณ‡ๆ–™ใซๆ›ธใ‹ใ‚Œใฆใ„ใ‚‹ๆญฃ็ขบใชๆƒ…ๅ ฑใฎใฟใ‚’ๅๆ˜ ใ—ใฆใใ ใ•ใ„ใ€‚
- ๅ›ž็ญ”ใ‚„่ฆ็ด„ใซใฏๅค–้ƒจใฎๆƒ…ๅ ฑใ‚„ๆš—้ป™ใฎ็Ÿฅ่ญ˜ใฏๅๆ˜ ใ—ใชใ„ใงใใ ใ•ใ„ใ€‚

ไปฅไธ‹ใฎใƒ•ใ‚ฉใƒผใƒžใƒƒใƒˆใงๅ‡บๅŠ›ใ—ใฆใใ ใ•ใ„:

```
### ๅ›ž็ญ”

ใ“ใ“ใซๅ›ž็ญ”ใ‚’ๆ›ธใ„ใฆใใ ใ•ใ„ใ€‚

### ่ฆ็ด„

ใ“ใ“ใซ่ฆ็ด„ใ‚’ๆ›ธใ„ใฆใใ ใ•ใ„ใ€‚
```
"""
    user = f"""
## ่ณชๅ•
{params_parsed.query}

## ๅ‚่€ƒ่ณ‡ๆ–™
{json.dumps(answers, ensure_ascii=False, indent=2)}
"""
    messages: Iterable[ChatCompletionMessageParam] = [
        {"role": "system", "name": "instruction", "content": system},
        {"role": "user", "name": "info", "content": shot_user},
        {"role": "assistant", "name": "summary", "content": shot_assistant},
        {"role": "user", "name": "info", "content": user},
    ]
    print("OpenAI chat completions", f"messages={messages}")
    stream = await clientOpenAI.chat.completions.create(
        messages=messages,
        model="gpt-4-turbo-2024-04-09",
        stream=True,
    )

    summary = ""
    async for chunk in stream:
        content = chunk.choices[0].delta.content or ""
        summary += content
        # FIXME: sanitize to return only elements that are not dangerous as markdown
        yield content

    await cache_generate_summary.set(key, summary)
    return


@subscription.field("generateSummary")
def resolve_generate_summary(
    summary: str, info: GraphQLResolveInfo, **params: Unpack[GenerateSummaryParams]
) -> GenerateSummarySubscriptionResult:
    assert info and params, "Prevent type check error"
    return {"summary": summary}