hideosnes commited on
Commit
46ea192
·
verified ·
1 Parent(s): 617e96c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -31
app.py CHANGED
@@ -107,14 +107,14 @@ examples = [
107
  [
108
  "./asset/0.jpg",
109
  None,
110
- "a cute monster, masterpiece, best quality, high quality",
111
  1.0,
112
  0.0,
113
  ],
114
  [
115
  "./asset/2.jpg",
116
  "./asset/house.jpg",
117
- "a house, masterpiece, best quality, high quality",
118
  1.0,
119
  0.6,
120
  ],
@@ -232,30 +232,17 @@ def pil_to_cv2(image_pil):
232
 
233
  # Description
234
  title = r"""
235
- <h1 align="center">InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation</h1>
236
  """
237
 
238
  description = r"""
239
- <b>Forked from <a href='https://github.com/InstantStyle/InstantStyle' target='_blank'>InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation</a>.<br>
240
- <b>Model by <a href='https://huggingface.co/ByteDance/SDXL-Lightning' target='_blank'>SDXL Lightning</a> and <a href='https://huggingface.co/h94/IP-Adapter' target='_blank'>IP-Adapter</a>.</b><br>
241
  """
242
 
243
  article = r"""
244
- ---
245
- 📝 **Citation**
246
  <br>
247
- If our work is helpful for your research or applications, please cite us via:
248
- ```bibtex
249
- @article{wang2024instantstyle,
250
- title={InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation},
251
- author={Wang, Haofan and Wang, Qixun and Bai, Xu and Qin, Zekui and Chen, Anthony},
252
- journal={arXiv preprint arXiv:2404.02733},
253
- year={2024}
254
- }
255
- ```
256
- 📧 **Contact**
257
- <br>
258
- If you have any questions, please feel free to open an issue or directly reach us out at <b>[email protected]</b>.
259
  """
260
 
261
  block = gr.Blocks()
@@ -273,14 +260,14 @@ with block:
273
  with gr.Column():
274
  prompt = gr.Textbox(
275
  label="Prompt",
276
- value="a cat, masterpiece, best quality, high quality",
277
  )
278
 
279
  scale = gr.Slider(
280
  minimum=0, maximum=2.0, step=0.01, value=1.0, label="Scale"
281
  )
282
 
283
- with gr.Accordion(open=False, label="Advanced Options"):
284
  target = gr.Radio(
285
  [
286
  "Load only style blocks",
@@ -288,7 +275,7 @@ with block:
288
  "Load original IP-Adapter",
289
  ],
290
  value="Load only style blocks",
291
- label="Style mode",
292
  )
293
  with gr.Column():
294
  src_image_pil = gr.Image(
@@ -299,23 +286,23 @@ with block:
299
  maximum=1.0,
300
  step=0.01,
301
  value=0.5,
302
- label="Controlnet conditioning scale",
303
  )
304
 
305
  n_prompt = gr.Textbox(
306
- label="Neg Prompt",
307
  value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
308
  )
309
 
310
  neg_content_prompt = gr.Textbox(
311
- label="Neg Content Prompt", value=""
312
  )
313
  neg_content_scale = gr.Slider(
314
  minimum=0,
315
  maximum=1.0,
316
  step=0.01,
317
  value=0.5,
318
- label="Neg Content Scale",
319
  )
320
 
321
  guidance_scale = gr.Slider(
@@ -323,27 +310,27 @@ with block:
323
  maximum=10.0,
324
  step=0.01,
325
  value=0.0,
326
- label="guidance scale",
327
  )
328
  num_inference_steps = gr.Slider(
329
  minimum=2,
330
  maximum=50.0,
331
  step=1.0,
332
  value=2,
333
- label="num inference steps",
334
  )
335
  seed = gr.Slider(
336
  minimum=-1,
337
  maximum=MAX_SEED,
338
  value=-1,
339
  step=1,
340
- label="Seed Value",
341
  )
342
 
343
- generate_button = gr.Button("Generate Image")
344
 
345
  with gr.Column():
346
- generated_image = gr.Image(label="Generated Image")
347
 
348
  inputs = [
349
  image_pil,
 
107
  [
108
  "./asset/0.jpg",
109
  None,
110
+ "3D model, cute monster, high quality",
111
  1.0,
112
  0.0,
113
  ],
114
  [
115
  "./asset/2.jpg",
116
  "./asset/house.jpg",
117
+ "3d model, house, kawai, cute, sci-fi, solarpunk, high quality",
118
  1.0,
119
  0.6,
120
  ],
 
232
 
233
  # Description
234
  title = r"""
235
+ <h1 align="center">I2I mit SDXL-Lightning & IP-Adapter</h1>
236
  """
237
 
238
  description = r"""
239
+ <b>ARM <3 GoldExtra Testversion<br>
240
+ <b>Wir schauen uns gut funktionierende Prompts. Bitte diese notieren und an Hidéo weiterleiten!</b><br>
241
  """
242
 
243
  article = r"""
 
 
244
  <br>
245
+ Bei Fragen: <a href="mailto:[email protected]">Mail an Hidéo</a>
 
 
 
 
 
 
 
 
 
 
 
246
  """
247
 
248
  block = gr.Blocks()
 
260
  with gr.Column():
261
  prompt = gr.Textbox(
262
  label="Prompt",
263
+ value="mewmewmew, uWu, space kitten, unicorn",
264
  )
265
 
266
  scale = gr.Slider(
267
  minimum=0, maximum=2.0, step=0.01, value=1.0, label="Scale"
268
  )
269
 
270
+ with gr.Accordion(open=False, label="Details (optional)"):
271
  target = gr.Radio(
272
  [
273
  "Load only style blocks",
 
275
  "Load original IP-Adapter",
276
  ],
277
  value="Load only style blocks",
278
+ label="Style mode (optional, sb works best!)",
279
  )
280
  with gr.Column():
281
  src_image_pil = gr.Image(
 
286
  maximum=1.0,
287
  step=0.01,
288
  value=0.5,
289
+ label="ControlNet Scale (test this!)",
290
  )
291
 
292
  n_prompt = gr.Textbox(
293
+ label="Negative Prompt // n_prompt",
294
  value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
295
  )
296
 
297
  neg_content_prompt = gr.Textbox(
298
+ label="Negative Content Prompt (Ignore this!)", value=""
299
  )
300
  neg_content_scale = gr.Slider(
301
  minimum=0,
302
  maximum=1.0,
303
  step=0.01,
304
  value=0.5,
305
+ label="NCS (Ignore this!) // neg_content_scale",
306
  )
307
 
308
  guidance_scale = gr.Slider(
 
310
  maximum=10.0,
311
  step=0.01,
312
  value=0.0,
313
+ label="Guidance Scale (test this!)",
314
  )
315
  num_inference_steps = gr.Slider(
316
  minimum=2,
317
  maximum=50.0,
318
  step=1.0,
319
  value=2,
320
+ label="Inference Steps (optional but test with 2+)",
321
  )
322
  seed = gr.Slider(
323
  minimum=-1,
324
  maximum=MAX_SEED,
325
  value=-1,
326
  step=1,
327
+ label="Seed Value (Seed-Proof) // -1 == random",
328
  )
329
 
330
+ generate_button = gr.Button("Simsalabim")
331
 
332
  with gr.Column():
333
+ generated_image = gr.Image(label="Magix uWu")
334
 
335
  inputs = [
336
  image_pil,