hidevscommunity commited on
Commit
8d1f6d3
·
verified ·
1 Parent(s): 75e7f39

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -7
app.py CHANGED
@@ -2,6 +2,8 @@ import streamlit as st
2
  import numpy as np
3
  import pickle
4
  import streamlit.components.v1 as components
 
 
5
 
6
  # Load the pickled model
7
  def load_model():
@@ -11,6 +13,10 @@ def load_model():
11
  def model_prediction(model, features):
12
  predicted = str(model.predict(features)[0])
13
  return predicted
 
 
 
 
14
 
15
  def app_design():
16
  # Add input fields for High, Open, and Low values
@@ -27,20 +33,29 @@ def app_design():
27
  elif Gender == 'Female':
28
  Gender = 0
29
  Age = st.number_input("Age")
30
- Industry = st.number_input("Industry")
31
- Profession = st.number_input("Profession")
32
- Traffic = st.number_input("Traffic")
33
- Coach = st.number_input("Coach")
 
 
 
 
 
 
 
34
  Head_gender = st.selectbox("Head Gender",('Male','Female'))
35
  if Head_gender == 'Male':
36
  Head_gender = 0
37
  elif Head_gender == 'Female':
38
  Head_gender = 1
39
- Greywage = st.number_input("Greywage")
40
- Way = st.number_input("Way")
 
 
41
  Extraversion = st.number_input("Extraversion")
42
  Independ = st.number_input("Independ")
43
- Selfcontrol = st.number_input("Selfcontrol")
44
  Anxiety = st.number_input("Anxiety")
45
  Novator = st.number_input("Novator")
46
 
 
2
  import numpy as np
3
  import pickle
4
  import streamlit.components.v1 as components
5
+ from sklearn.preprocessing import LabelEncoder
6
+ le = LabelEncoder()
7
 
8
  # Load the pickled model
9
  def load_model():
 
13
  def model_prediction(model, features):
14
  predicted = str(model.predict(features)[0])
15
  return predicted
16
+
17
+ def transform(text):
18
+ text = le.fit_transform(text)
19
+ return text[0]
20
 
21
  def app_design():
22
  # Add input fields for High, Open, and Low values
 
33
  elif Gender == 'Female':
34
  Gender = 0
35
  Age = st.number_input("Age")
36
+ Industry = st.text_input("Industry")
37
+ Industry=transform([Industry])
38
+ Profession = st.text_input("Profession")
39
+ Profession=transform([Profession])
40
+ Traffic = st.text_input("Traffic")
41
+ Traffic=transform([Traffic])
42
+ Coach = st.selectbox('Coach',('Yes','No'))
43
+ if Coach == 'Yes':
44
+ Coach = 1
45
+ elif Coach == 'No':
46
+ Coach = 0
47
  Head_gender = st.selectbox("Head Gender",('Male','Female'))
48
  if Head_gender == 'Male':
49
  Head_gender = 0
50
  elif Head_gender == 'Female':
51
  Head_gender = 1
52
+ Greywage = st.text_input("Greywage")
53
+ Greywage=transform([Greywage])
54
+ Way = st.text_input("Way")
55
+ Way=transform([Way])
56
  Extraversion = st.number_input("Extraversion")
57
  Independ = st.number_input("Independ")
58
+ Selfcontrol = st.number_input("Self-control")
59
  Anxiety = st.number_input("Anxiety")
60
  Novator = st.number_input("Novator")
61