Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,98 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
gr.Textbox(value="You are
|
50 |
-
gr.Slider(minimum=1, maximum=
|
51 |
-
gr.Slider(minimum=0.
|
52 |
-
gr.Slider(
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
import PyPDF2
|
4 |
+
from langchain.prompts import PromptTemplate
|
5 |
|
6 |
+
# Initialize the Hugging Face client with gemma2-9b-it
|
7 |
+
client = InferenceClient("HuggingFaceH4/gemma2-9b-it")
|
|
|
|
|
8 |
|
9 |
+
# Function to read text from a PDF file
|
10 |
+
def pdf_to_text(pdf_path):
|
11 |
+
with open(pdf_path, 'rb') as file:
|
12 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
13 |
+
text = ''
|
14 |
+
for page in range(len(pdf_reader.pages)):
|
15 |
+
text += pdf_reader.pages[page].extract_text()
|
16 |
+
return text
|
17 |
|
18 |
+
# Function to analyze CV content
|
19 |
+
def analyze_cv(cv_text):
|
20 |
+
if not cv_text or not isinstance(cv_text, str):
|
21 |
+
raise ValueError("The CV text must be a non-empty string.")
|
22 |
+
prompt_template = PromptTemplate.from_template('''
|
23 |
+
You are an AI designed to extract structured information from unstructured text. Your task is to analyze the content of a candidate's resume or CV and extract the following details:
|
|
|
|
|
|
|
24 |
|
25 |
+
**CV**
|
26 |
+
{cv_text}
|
|
|
|
|
|
|
27 |
|
28 |
+
**Information Extraction and Output Format**
|
29 |
+
For the given resume, extract and present the following details in the specified format:
|
30 |
|
31 |
+
1. Candidate Information
|
32 |
+
- Full Name
|
33 |
+
- Contact Information (Phone, Email, Address, etc.)
|
34 |
+
- Date of Birth (if available)
|
35 |
+
- Habitat (if specified, e.g., location, region, or country of residence)
|
36 |
+
|
37 |
+
2. Education
|
38 |
+
- Degree Name (e.g., Bachelor's, Master's, Ph.D.)
|
39 |
+
- Field of Study (e.g., Computer Science, Business Administration)
|
40 |
+
- Institution Name
|
41 |
+
- Year(s) of Graduation
|
42 |
+
|
43 |
+
3. Professional Experience
|
44 |
+
- For each job extract:
|
45 |
+
- Job Title
|
46 |
+
- Company Name
|
47 |
+
- Duration (start and end dates, or years of experience)
|
48 |
+
- Summary of Key Responsibilities and Achievements
|
49 |
+
|
50 |
+
4. Skills
|
51 |
+
- List of Skills (include technical, soft, and industry-specific skills mentioned in the resume)
|
52 |
+
|
53 |
+
5. Certifications
|
54 |
+
- Certification Name
|
55 |
+
- Issuing Organization
|
56 |
+
- Year of Issuance
|
57 |
+
|
58 |
+
6. Language Proficiency
|
59 |
+
- Languages Mentioned (include proficiency levels if specified in the resume)
|
60 |
|
61 |
+
Do not explain, comment or make up any more information that is not relative to the list of Information extraction. Respond in Vietnamese. Let's work this out in a step by step way to ensure the correct answer. [END].
|
62 |
+
''')
|
63 |
+
prompt = prompt_template.format(cv_text=cv_text)
|
64 |
+
response = client.text_generation(prompt, max_tokens=2048, temperature=0.0)
|
65 |
+
return response
|
|
|
|
|
|
|
66 |
|
67 |
+
# Chatbot with PDF and CV analysis
|
68 |
+
def chatbot_with_pdf(pdf_file, user_message, history, system_message, max_tokens, temperature, top_p):
|
69 |
+
if pdf_file is not None:
|
70 |
+
pdf_text = pdf_to_text(pdf_file.name)
|
71 |
+
cv_analysis = analyze_cv(pdf_text) # Call analyze_cv with the extracted PDF text
|
72 |
+
user_message = f"CV Analysis:\n{cv_analysis}\n\nUser Message:\n{user_message}"
|
73 |
+
response_gen = respond(
|
74 |
+
user_message, history, system_message, max_tokens, temperature, top_p
|
75 |
+
)
|
76 |
+
return list(response_gen)[-1], history + [(user_message, "")]
|
77 |
|
78 |
+
# Define Gradio interface
|
79 |
+
interface = gr.Interface(
|
80 |
+
fn=chatbot_with_pdf,
|
81 |
+
inputs=[
|
82 |
+
gr.File(label="Upload a PDF File"),
|
83 |
+
gr.Textbox(label="Your Message"),
|
84 |
+
gr.State(label="Chat History"),
|
85 |
+
gr.Textbox(label="System Message", value="You are an AI assistant."),
|
86 |
+
gr.Slider(label="Max Tokens", minimum=1, maximum=1000, value=200),
|
87 |
+
gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.7, step=0.1),
|
88 |
+
gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1),
|
89 |
+
],
|
90 |
+
outputs=[
|
91 |
+
gr.Textbox(label="Response"),
|
92 |
+
gr.State(label="Chat History"),
|
|
|
|
|
93 |
],
|
94 |
+
title="Chatbot with CV Analysis and PDF Integration",
|
95 |
)
|
96 |
|
97 |
+
# Launch Gradio app
|
98 |
+
interface.launch()
|
|