Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import bitsandbytes as bnb
|
3 |
+
import transformers
|
4 |
+
import bs4
|
5 |
+
import pandas as pd
|
6 |
+
import re
|
7 |
+
import streamlit as st
|
8 |
+
import pandas as pd
|
9 |
+
import os
|
10 |
+
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
from langchain_core.messages import AIMessage, HumanMessage
|
13 |
+
from langchain_core.output_parsers import StrOutputParser
|
14 |
+
from IPython.display import clear_output
|
15 |
+
from langchain.schema.runnable import RunnablePassthrough
|
16 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
17 |
+
from langchain_community.document_loaders import YoutubeLoader
|
18 |
+
from langchain_community.document_loaders import WebBaseLoader, DataFrameLoader, CSVLoader
|
19 |
+
from langchain_community.vectorstores.utils import filter_complex_metadata
|
20 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
21 |
+
from langchain_community.vectorstores import FAISS
|
22 |
+
from langchain.chains import RetrievalQA
|
23 |
+
from langchain.llms import HuggingFacePipeline
|
24 |
+
from langchain.prompts import PromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
|
25 |
+
|
26 |
+
from IPython.display import display, Markdown, clear_output
|
27 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
28 |
+
|
29 |
+
from huggingface_hub import login
|
30 |
+
# Load environment variables from .env file
|
31 |
+
load_dotenv()
|
32 |
+
|
33 |
+
# Get the API token from environment variable
|
34 |
+
api_token = os.getenv("API_TOKEN")
|
35 |
+
|
36 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:15000"
|
37 |
+
|
38 |
+
model_id = "google/gemma-2-9b-it"
|
39 |
+
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
40 |
+
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
42 |
+
model_id,
|
43 |
+
return_tensors="pt",
|
44 |
+
padding=True,
|
45 |
+
truncation=True,
|
46 |
+
trust_remote_code=True,
|
47 |
+
)
|
48 |
+
tokenizer.pad_token = tokenizer.eos_token
|
49 |
+
tokenizer.padding_side = "right"
|
50 |
+
|
51 |
+
model = AutoModelForCausalLM.from_pretrained(
|
52 |
+
model_id,
|
53 |
+
quantization_config=quantization_config,
|
54 |
+
device_map="auto",
|
55 |
+
low_cpu_mem_usage=True,
|
56 |
+
pad_token_id=0,
|
57 |
+
)
|
58 |
+
model.config.use_cache = False
|
59 |
+
|
60 |
+
# Create a text generation pipeline with specific settings
|
61 |
+
pipe = transformers.pipeline(
|
62 |
+
task="text-generation",
|
63 |
+
model=model,
|
64 |
+
tokenizer=tokenizer,
|
65 |
+
torch_dtype=torch.float16,
|
66 |
+
device_map="auto",
|
67 |
+
temperature=0.0,
|
68 |
+
top_p=0.9,
|
69 |
+
num_return_sequences=1,
|
70 |
+
eos_token_id=tokenizer.eos_token_id,
|
71 |
+
max_length=4096,
|
72 |
+
truncation=True,
|
73 |
+
)
|
74 |
+
|
75 |
+
chat_model = HuggingFacePipeline(pipeline=pipe)
|
76 |
+
|
77 |
+
template = """
|
78 |
+
You are a genius trader with extensive knowledge of the financial and stock markets, capable of providing deep and insightful analysis of financial stocks with remarkable accuracy.
|
79 |
+
|
80 |
+
**ALWAYS**
|
81 |
+
Summarize and provide the main insights.
|
82 |
+
Be as detailed as possible, but don't make up any information that’s not from the context.
|
83 |
+
If you don't know an answer, say you don't know.
|
84 |
+
Let's think step by step.
|
85 |
+
|
86 |
+
Please ensure responses are informative, accurate, and tailored to the user's queries and preferences.
|
87 |
+
Use natural language to engage users and provide readable content throughout your response.
|
88 |
+
|
89 |
+
Chat history:
|
90 |
+
{chat_history}
|
91 |
+
|
92 |
+
User question:
|
93 |
+
{user_question}
|
94 |
+
"""
|
95 |
+
|
96 |
+
prompt_template = ChatPromptTemplate.from_template(template)
|
97 |
+
|
98 |
+
def find_youtube_links(text):
|
99 |
+
# Define the regular expression pattern for YouTube URLs
|
100 |
+
youtube_regex = (r'(https?://(?:www\.)?(?:youtube\.com/watch\?v=|youtu\.be/)[^ \n]+)')
|
101 |
+
# Use re.findall() to find all matches in the text
|
102 |
+
matches = re.findall(youtube_regex, text)
|
103 |
+
return str(' '.join(matches))
|
104 |
+
|
105 |
+
|
106 |
+
# Initialize session state
|
107 |
+
if "chat_history" not in st.session_state:
|
108 |
+
st.session_state.chat_history = [AIMessage(content="Hello, how can I help you?")]
|
109 |
+
|
110 |
+
|
111 |
+
# Display chat history
|
112 |
+
for message in st.session_state.chat_history:
|
113 |
+
if isinstance(message, AIMessage):
|
114 |
+
with st.chat_message("AI"):
|
115 |
+
st.write(message.content)
|
116 |
+
elif isinstance(message, HumanMessage):
|
117 |
+
with st.chat_message("Human"):
|
118 |
+
st.write(message.content)
|
119 |
+
|
120 |
+
|
121 |
+
# User input
|
122 |
+
user_query = st.chat_input("Type your message here...")
|
123 |
+
if user_query is not None and user_query != "":
|
124 |
+
st.session_state.chat_history.append(HumanMessage(content=user_query))
|
125 |
+
|
126 |
+
with st.chat_message("Human"):
|
127 |
+
st.markdown(user_query)
|
128 |
+
|
129 |
+
loader = YoutubeLoader.from_youtube_url(
|
130 |
+
find_youtube_links(user_query),
|
131 |
+
add_video_info=False,
|
132 |
+
language=["en", "vi"],
|
133 |
+
translation="en",
|
134 |
+
)
|
135 |
+
docs = loader.load()
|
136 |
+
# Convert the loaded documents to a list of dictionaries
|
137 |
+
data_list = [
|
138 |
+
{
|
139 |
+
"source": doc.metadata['source'],
|
140 |
+
"page_content": doc.page_content
|
141 |
+
}
|
142 |
+
for doc in docs
|
143 |
+
]
|
144 |
+
|
145 |
+
df = pd.DataFrame(data_list)
|
146 |
+
loader = DataFrameLoader(df, page_content_column='page_content')
|
147 |
+
content = loader.load()
|
148 |
+
# reviews = filter_complex_metadata(reviews)
|
149 |
+
|
150 |
+
# Split the document into chunks with a specified chunk size
|
151 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=150)
|
152 |
+
all_splits = text_splitter.split_documents(content)
|
153 |
+
|
154 |
+
# Initialize the embedding model
|
155 |
+
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L12-v2")
|
156 |
+
|
157 |
+
# Store the document into a vector store with a specific embedding model
|
158 |
+
vectorstore = FAISS.from_documents(all_splits, embedding_model)
|
159 |
+
reviews_retriever = vectorstore.as_retriever()
|
160 |
+
|
161 |
+
# Function to get a response from the model
|
162 |
+
def get_response(user_query, chat_history):
|
163 |
+
chain = prompt_template | chat_model | StrOutputParser()
|
164 |
+
response = chain.invoke({
|
165 |
+
"user_question": user_query,
|
166 |
+
"chat_history": chat_history,
|
167 |
+
})
|
168 |
+
return response
|
169 |
+
|
170 |
+
response = get_response(reviews_retriever, st.session_state.chat_history)
|
171 |
+
|
172 |
+
with st.chat_message("AI"):
|
173 |
+
st.write(response)
|
174 |
+
|
175 |
+
st.session_state.chat_history.append(AIMessage(content=response))
|