File size: 4,818 Bytes
52a0f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import musdb
import os
import numpy as np
import glob

from data.utils import load, write_wav


def get_musdbhq(database_path):
    '''
    Retrieve audio file paths for MUSDB HQ dataset
    :param database_path: MUSDB HQ root directory
    :return: dictionary with train and test keys, each containing list of samples, each sample containing all audio paths
    '''
    subsets = list()

    for subset in ["train", "test"]:
        print("Loading " + subset + " set...")
        tracks = glob.glob(os.path.join(database_path, subset, "*"))
        samples = list()

        # Go through tracks
        for track_folder in sorted(tracks):
            # Skip track if mixture is already written, assuming this track is done already
            example = dict()
            for stem in ["mix", "bass", "drums", "other", "vocals"]:
                filename = stem if stem != "mix" else "mixture"
                audio_path = os.path.join(track_folder, filename + ".wav")
                example[stem] = audio_path

            # Add other instruments to form accompaniment
            acc_path = os.path.join(track_folder, "accompaniment.wav")

            if not os.path.exists(acc_path):
                print("Writing accompaniment to " + track_folder)
                stem_audio = []
                for stem in ["bass", "drums", "other"]:
                    audio, sr = load(example[stem], sr=None, mono=False)
                    stem_audio.append(audio)
                acc_audio = np.clip(sum(stem_audio), -1.0, 1.0)
                write_wav(acc_path, acc_audio, sr)

            example["accompaniment"] = acc_path

            samples.append(example)

        subsets.append(samples)

    return subsets

def get_musdb(database_path):
    '''
    Retrieve audio file paths for MUSDB dataset
    :param database_path: MUSDB root directory
    :return: dictionary with train and test keys, each containing list of samples, each sample containing all audio paths
    '''
    mus = musdb.DB(root=database_path, is_wav=False)

    subsets = list()

    for subset in ["train", "test"]:
        tracks = mus.load_mus_tracks(subset)
        samples = list()

        # Go through tracks
        for track in sorted(tracks):
            # Skip track if mixture is already written, assuming this track is done already
            track_path = track.path[:-4]
            mix_path = track_path + "_mix.wav"
            acc_path = track_path + "_accompaniment.wav"
            if os.path.exists(mix_path):
                print("WARNING: Skipping track " + mix_path + " since it exists already")

                # Add paths and then skip
                paths = {"mix" : mix_path, "accompaniment" : acc_path}
                paths.update({key : track_path + "_" + key + ".wav" for key in ["bass", "drums", "other", "vocals"]})

                samples.append(paths)

                continue

            rate = track.rate

            # Go through each instrument
            paths = dict()
            stem_audio = dict()
            for stem in ["bass", "drums", "other", "vocals"]:
                path = track_path + "_" + stem + ".wav"
                audio = track.targets[stem].audio
                write_wav(path, audio, rate)
                stem_audio[stem] = audio
                paths[stem] = path

            # Add other instruments to form accompaniment
            acc_audio = np.clip(sum([stem_audio[key] for key in list(stem_audio.keys()) if key != "vocals"]), -1.0, 1.0)
            write_wav(acc_path, acc_audio, rate)
            paths["accompaniment"] = acc_path

            # Create mixture
            mix_audio = track.audio
            write_wav(mix_path, mix_audio, rate)
            paths["mix"] = mix_path

            diff_signal = np.abs(mix_audio - acc_audio - stem_audio["vocals"])
            print("Maximum absolute deviation from source additivity constraint: " + str(np.max(diff_signal)))# Check if acc+vocals=mix
            print("Mean absolute deviation from source additivity constraint:    " + str(np.mean(diff_signal)))

            samples.append(paths)

        subsets.append(samples)

    print("DONE preparing dataset!")
    return subsets

def get_musdb_folds(root_path, version="HQ"):
    if version == "HQ":
        dataset = get_musdbhq(root_path)
    else:
        dataset = get_musdb(root_path)
    train_val_list = dataset[0]
    test_list = dataset[1]

    np.random.seed(1337) # Ensure that partitioning is always the same on each run
    train_list = np.random.choice(train_val_list, 75, replace=False)
    val_list = [elem for elem in train_val_list if elem not in train_list]
    # print("First training song: " + str(train_list[0])) # To debug whether partitioning is deterministic
    return {"train" : train_list, "val" : val_list, "test" : test_list}