File size: 4,811 Bytes
57599d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import numpy as np
import torch
from torch import nn as nn
from torch.nn import functional as F

class Resample1d(nn.Module):
    def __init__(self, channels, kernel_size, stride, transpose=False, padding="reflect", trainable=False):
        '''
        Creates a resampling layer for time series data (using 1D convolution) - (N, C, W) input format
        :param channels: Number of features C at each time-step
        :param kernel_size: Width of sinc-based lowpass-filter (>= 15 recommended for good filtering performance)
        :param stride: Resampling factor (integer)
        :param transpose: False for down-, true for upsampling
        :param padding: Either "reflect" to pad or "valid" to not pad
        :param trainable: Optionally activate this to train the lowpass-filter, starting from the sinc initialisation
        '''
        super(Resample1d, self).__init__()

        self.padding = padding
        self.kernel_size = kernel_size
        self.stride = stride
        self.transpose = transpose
        self.channels = channels

        cutoff = 0.5 / stride

        assert(kernel_size > 2)
        assert ((kernel_size - 1) % 2 == 0)
        assert(padding == "reflect" or padding == "valid")

        filter = build_sinc_filter(kernel_size, cutoff)

        self.filter = torch.nn.Parameter(torch.from_numpy(np.repeat(np.reshape(filter, [1, 1, kernel_size]), channels, axis=0)), requires_grad=trainable)

    def forward(self, x):
        # Pad here if not using transposed conv
        input_size = x.shape[2]
        if self.padding != "valid":
            num_pad = (self.kernel_size-1)//2
            out = F.pad(x, (num_pad, num_pad), mode=self.padding)
        else:
            out = x

        # Lowpass filter (+ 0 insertion if transposed)
        if self.transpose:
            expected_steps = ((input_size - 1) * self.stride + 1)
            if self.padding == "valid":
                expected_steps = expected_steps - self.kernel_size + 1

            out = F.conv_transpose1d(out, self.filter, stride=self.stride, padding=0, groups=self.channels)
            diff_steps = out.shape[2] - expected_steps
            if diff_steps > 0:
                assert(diff_steps % 2 == 0)
                out = out[:,:,diff_steps//2:-diff_steps//2]
        else:
            assert(input_size % self.stride == 1)
            out = F.conv1d(out, self.filter, stride=self.stride, padding=0, groups=self.channels)

        return out

    def get_output_size(self, input_size):
        '''
        Returns the output dimensionality (number of timesteps) for a given input size
        :param input_size: Number of input time steps (Scalar, each feature is one-dimensional)
        :return: Output size (scalar)
        '''
        assert(input_size > 1)
        if self.transpose:
            if self.padding == "valid":
                return ((input_size - 1) * self.stride + 1) - self.kernel_size + 1
            else:
                return ((input_size - 1) * self.stride + 1)
        else:
            assert(input_size % self.stride == 1) # Want to take first and last sample
            if self.padding == "valid":
                return input_size - self.kernel_size + 1
            else:
                return input_size

    def get_input_size(self, output_size):
        '''
        Returns the input dimensionality (number of timesteps) for a given output size
        :param input_size: Number of input time steps (Scalar, each feature is one-dimensional)
        :return: Output size (scalar)
        '''

        # Strided conv/decimation
        if not self.transpose:
            curr_size = (output_size - 1)*self.stride + 1 # o = (i-1)//s + 1 => i = (o - 1)*s + 1
        else:
            curr_size = output_size

        # Conv
        if self.padding == "valid":
            curr_size = curr_size + self.kernel_size - 1 # o = i + p - k + 1

        # Transposed
        if self.transpose:
            assert ((curr_size - 1) % self.stride == 0)# We need to have a value at the beginning and end
            curr_size = ((curr_size - 1) // self.stride) + 1
        assert(curr_size > 0)
        return curr_size

def build_sinc_filter(kernel_size, cutoff):
    # FOLLOWING https://www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch16.pdf
    # Sinc lowpass filter
    # Build sinc kernel
    assert(kernel_size % 2 == 1)
    M = kernel_size - 1
    filter = np.zeros(kernel_size, dtype=np.float32)
    for i in range(kernel_size):
        if i == M//2:
            filter[i] = 2 * np.pi * cutoff
        else:
            filter[i] = (np.sin(2 * np.pi * cutoff * (i - M//2)) / (i - M//2)) * \
                    (0.42 - 0.5 * np.cos((2 * np.pi * i) / M) + 0.08 * np.cos(4 * np.pi * M))

    filter = filter / np.sum(filter)
    return filter