File size: 9,487 Bytes
cce0a91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import torch
import torch.nn as nn

from model.crop import centre_crop
from model.resample import Resample1d
from model.conv import ConvLayer

class UpsamplingBlock(nn.Module):
    def __init__(self, n_inputs, n_shortcut, n_outputs, kernel_size, stride, depth, conv_type, res):
        super(UpsamplingBlock, self).__init__()
        assert(stride > 1)

        # CONV 1 for UPSAMPLING
        if res == "fixed":
            self.upconv = Resample1d(n_inputs, 15, stride, transpose=True)
        else:
            self.upconv = ConvLayer(n_inputs, n_inputs, kernel_size, stride, conv_type, transpose=True)

        self.pre_shortcut_convs = nn.ModuleList([ConvLayer(n_inputs, n_outputs, kernel_size, 1, conv_type)] +
                                                [ConvLayer(n_outputs, n_outputs, kernel_size, 1, conv_type) for _ in range(depth - 1)])

        # CONVS to combine high- with low-level information (from shortcut)
        self.post_shortcut_convs = nn.ModuleList([ConvLayer(n_outputs + n_shortcut, n_outputs, kernel_size, 1, conv_type)] +
                                                 [ConvLayer(n_outputs, n_outputs, kernel_size, 1, conv_type) for _ in range(depth - 1)])

    def forward(self, x, shortcut):
        # UPSAMPLE HIGH-LEVEL FEATURES
        upsampled = self.upconv(x)

        for conv in self.pre_shortcut_convs:
            upsampled = conv(upsampled)

        # Prepare shortcut connection
        combined = centre_crop(shortcut, upsampled)

        # Combine high- and low-level features
        for conv in self.post_shortcut_convs:
            combined = conv(torch.cat([combined, centre_crop(upsampled, combined)], dim=1))
        return combined

    def get_output_size(self, input_size):
        curr_size = self.upconv.get_output_size(input_size)

        # Upsampling convs
        for conv in self.pre_shortcut_convs:
            curr_size = conv.get_output_size(curr_size)

        # Combine convolutions
        for conv in self.post_shortcut_convs:
            curr_size = conv.get_output_size(curr_size)

        return curr_size

class DownsamplingBlock(nn.Module):
    def __init__(self, n_inputs, n_shortcut, n_outputs, kernel_size, stride, depth, conv_type, res):
        super(DownsamplingBlock, self).__init__()
        assert(stride > 1)

        self.kernel_size = kernel_size
        self.stride = stride

        # CONV 1
        self.pre_shortcut_convs = nn.ModuleList([ConvLayer(n_inputs, n_shortcut, kernel_size, 1, conv_type)] +
                                                [ConvLayer(n_shortcut, n_shortcut, kernel_size, 1, conv_type) for _ in range(depth - 1)])

        self.post_shortcut_convs = nn.ModuleList([ConvLayer(n_shortcut, n_outputs, kernel_size, 1, conv_type)] +
                                                 [ConvLayer(n_outputs, n_outputs, kernel_size, 1, conv_type) for _ in
                                                  range(depth - 1)])

        # CONV 2 with decimation
        if res == "fixed":
            self.downconv = Resample1d(n_outputs, 15, stride) # Resampling with fixed-size sinc lowpass filter
        else:
            self.downconv = ConvLayer(n_outputs, n_outputs, kernel_size, stride, conv_type)

    def forward(self, x):
        # PREPARING SHORTCUT FEATURES
        shortcut = x
        for conv in self.pre_shortcut_convs:
            shortcut = conv(shortcut)

        # PREPARING FOR DOWNSAMPLING
        out = shortcut
        for conv in self.post_shortcut_convs:
            out = conv(out)

        # DOWNSAMPLING
        out = self.downconv(out)

        return out, shortcut

    def get_input_size(self, output_size):
        curr_size = self.downconv.get_input_size(output_size)

        for conv in reversed(self.post_shortcut_convs):
            curr_size = conv.get_input_size(curr_size)

        for conv in reversed(self.pre_shortcut_convs):
            curr_size = conv.get_input_size(curr_size)
        return curr_size

class Waveunet(nn.Module):
    def __init__(self, num_inputs, num_channels, num_outputs, instruments, kernel_size, target_output_size, conv_type, res, separate=False, depth=1, strides=2):
        super(Waveunet, self).__init__()

        self.num_levels = len(num_channels)
        self.strides = strides
        self.kernel_size = kernel_size
        self.num_inputs = num_inputs
        self.num_outputs = num_outputs
        self.depth = depth
        self.instruments = instruments
        self.separate = separate

        # Only odd filter kernels allowed
        assert(kernel_size % 2 == 1)

        self.waveunets = nn.ModuleDict()

        model_list = instruments if separate else ["ALL"]
        # Create a model for each source if we separate sources separately, otherwise only one (model_list=["ALL"])
        for instrument in model_list:
            module = nn.Module()

            module.downsampling_blocks = nn.ModuleList()
            module.upsampling_blocks = nn.ModuleList()

            for i in range(self.num_levels - 1):
                in_ch = num_inputs if i == 0 else num_channels[i]

                module.downsampling_blocks.append(
                    DownsamplingBlock(in_ch, num_channels[i], num_channels[i+1], kernel_size, strides, depth, conv_type, res))

            for i in range(0, self.num_levels - 1):
                module.upsampling_blocks.append(
                    UpsamplingBlock(num_channels[-1-i], num_channels[-2-i], num_channels[-2-i], kernel_size, strides, depth, conv_type, res))

            module.bottlenecks = nn.ModuleList(
                [ConvLayer(num_channels[-1], num_channels[-1], kernel_size, 1, conv_type) for _ in range(depth)])

            # Output conv
            outputs = num_outputs if separate else num_outputs * len(instruments)
            module.output_conv = nn.Conv1d(num_channels[0], outputs, 1)

            self.waveunets[instrument] = module

        self.set_output_size(target_output_size)

    def set_output_size(self, target_output_size):
        self.target_output_size = target_output_size

        self.input_size, self.output_size = self.check_padding(target_output_size)
        print("Using valid convolutions with " + str(self.input_size) + " inputs and " + str(self.output_size) + " outputs")

        assert((self.input_size - self.output_size) % 2 == 0)
        self.shapes = {"output_start_frame" : (self.input_size - self.output_size) // 2,
                       "output_end_frame" : (self.input_size - self.output_size) // 2 + self.output_size,
                       "output_frames" : self.output_size,
                       "input_frames" : self.input_size}

    def check_padding(self, target_output_size):
        # Ensure number of outputs covers a whole number of cycles so each output in the cycle is weighted equally during training
        bottleneck = 1

        while True:
            out = self.check_padding_for_bottleneck(bottleneck, target_output_size)
            if out is not False:
                return out
            bottleneck += 1

    def check_padding_for_bottleneck(self, bottleneck, target_output_size):
        module = self.waveunets[[k for k in self.waveunets.keys()][0]]
        try:
            curr_size = bottleneck
            for idx, block in enumerate(module.upsampling_blocks):
                curr_size = block.get_output_size(curr_size)
            output_size = curr_size

            # Bottleneck-Conv
            curr_size = bottleneck
            for block in reversed(module.bottlenecks):
                curr_size = block.get_input_size(curr_size)
            for idx, block in enumerate(reversed(module.downsampling_blocks)):
                curr_size = block.get_input_size(curr_size)

            assert(output_size >= target_output_size)
            return curr_size, output_size
        except AssertionError as e:
            return False

    def forward_module(self, x, module):
        '''
        A forward pass through a single Wave-U-Net (multiple Wave-U-Nets might be used, one for each source)
        :param x: Input mix
        :param module: Network module to be used for prediction
        :return: Source estimates
        '''
        shortcuts = []
        out = x

        # DOWNSAMPLING BLOCKS
        for block in module.downsampling_blocks:
            out, short = block(out)
            shortcuts.append(short)

        # BOTTLENECK CONVOLUTION
        for conv in module.bottlenecks:
            out = conv(out)

        # UPSAMPLING BLOCKS
        for idx, block in enumerate(module.upsampling_blocks):
            out = block(out, shortcuts[-1 - idx])

        # OUTPUT CONV
        out = module.output_conv(out)
        if not self.training:  # At test time clip predictions to valid amplitude range
            out = out.clamp(min=-1.0, max=1.0)
        return out

    def forward(self, x, inst=None):
        curr_input_size = x.shape[-1]
        assert(curr_input_size == self.input_size) # User promises to feed the proper input himself, to get the pre-calculated (NOT the originally desired) output size

        if self.separate:
            return {inst : self.forward_module(x, self.waveunets[inst])}
        else:
            assert(len(self.waveunets) == 1)
            out = self.forward_module(x, self.waveunets["ALL"])

            out_dict = {}
            for idx, inst in enumerate(self.instruments):
                out_dict[inst] = out[:, idx * self.num_outputs:(idx + 1) * self.num_outputs]
            return out_dict