Spaces:
Runtime error
Runtime error
File size: 9,487 Bytes
cce0a91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import torch
import torch.nn as nn
from model.crop import centre_crop
from model.resample import Resample1d
from model.conv import ConvLayer
class UpsamplingBlock(nn.Module):
def __init__(self, n_inputs, n_shortcut, n_outputs, kernel_size, stride, depth, conv_type, res):
super(UpsamplingBlock, self).__init__()
assert(stride > 1)
# CONV 1 for UPSAMPLING
if res == "fixed":
self.upconv = Resample1d(n_inputs, 15, stride, transpose=True)
else:
self.upconv = ConvLayer(n_inputs, n_inputs, kernel_size, stride, conv_type, transpose=True)
self.pre_shortcut_convs = nn.ModuleList([ConvLayer(n_inputs, n_outputs, kernel_size, 1, conv_type)] +
[ConvLayer(n_outputs, n_outputs, kernel_size, 1, conv_type) for _ in range(depth - 1)])
# CONVS to combine high- with low-level information (from shortcut)
self.post_shortcut_convs = nn.ModuleList([ConvLayer(n_outputs + n_shortcut, n_outputs, kernel_size, 1, conv_type)] +
[ConvLayer(n_outputs, n_outputs, kernel_size, 1, conv_type) for _ in range(depth - 1)])
def forward(self, x, shortcut):
# UPSAMPLE HIGH-LEVEL FEATURES
upsampled = self.upconv(x)
for conv in self.pre_shortcut_convs:
upsampled = conv(upsampled)
# Prepare shortcut connection
combined = centre_crop(shortcut, upsampled)
# Combine high- and low-level features
for conv in self.post_shortcut_convs:
combined = conv(torch.cat([combined, centre_crop(upsampled, combined)], dim=1))
return combined
def get_output_size(self, input_size):
curr_size = self.upconv.get_output_size(input_size)
# Upsampling convs
for conv in self.pre_shortcut_convs:
curr_size = conv.get_output_size(curr_size)
# Combine convolutions
for conv in self.post_shortcut_convs:
curr_size = conv.get_output_size(curr_size)
return curr_size
class DownsamplingBlock(nn.Module):
def __init__(self, n_inputs, n_shortcut, n_outputs, kernel_size, stride, depth, conv_type, res):
super(DownsamplingBlock, self).__init__()
assert(stride > 1)
self.kernel_size = kernel_size
self.stride = stride
# CONV 1
self.pre_shortcut_convs = nn.ModuleList([ConvLayer(n_inputs, n_shortcut, kernel_size, 1, conv_type)] +
[ConvLayer(n_shortcut, n_shortcut, kernel_size, 1, conv_type) for _ in range(depth - 1)])
self.post_shortcut_convs = nn.ModuleList([ConvLayer(n_shortcut, n_outputs, kernel_size, 1, conv_type)] +
[ConvLayer(n_outputs, n_outputs, kernel_size, 1, conv_type) for _ in
range(depth - 1)])
# CONV 2 with decimation
if res == "fixed":
self.downconv = Resample1d(n_outputs, 15, stride) # Resampling with fixed-size sinc lowpass filter
else:
self.downconv = ConvLayer(n_outputs, n_outputs, kernel_size, stride, conv_type)
def forward(self, x):
# PREPARING SHORTCUT FEATURES
shortcut = x
for conv in self.pre_shortcut_convs:
shortcut = conv(shortcut)
# PREPARING FOR DOWNSAMPLING
out = shortcut
for conv in self.post_shortcut_convs:
out = conv(out)
# DOWNSAMPLING
out = self.downconv(out)
return out, shortcut
def get_input_size(self, output_size):
curr_size = self.downconv.get_input_size(output_size)
for conv in reversed(self.post_shortcut_convs):
curr_size = conv.get_input_size(curr_size)
for conv in reversed(self.pre_shortcut_convs):
curr_size = conv.get_input_size(curr_size)
return curr_size
class Waveunet(nn.Module):
def __init__(self, num_inputs, num_channels, num_outputs, instruments, kernel_size, target_output_size, conv_type, res, separate=False, depth=1, strides=2):
super(Waveunet, self).__init__()
self.num_levels = len(num_channels)
self.strides = strides
self.kernel_size = kernel_size
self.num_inputs = num_inputs
self.num_outputs = num_outputs
self.depth = depth
self.instruments = instruments
self.separate = separate
# Only odd filter kernels allowed
assert(kernel_size % 2 == 1)
self.waveunets = nn.ModuleDict()
model_list = instruments if separate else ["ALL"]
# Create a model for each source if we separate sources separately, otherwise only one (model_list=["ALL"])
for instrument in model_list:
module = nn.Module()
module.downsampling_blocks = nn.ModuleList()
module.upsampling_blocks = nn.ModuleList()
for i in range(self.num_levels - 1):
in_ch = num_inputs if i == 0 else num_channels[i]
module.downsampling_blocks.append(
DownsamplingBlock(in_ch, num_channels[i], num_channels[i+1], kernel_size, strides, depth, conv_type, res))
for i in range(0, self.num_levels - 1):
module.upsampling_blocks.append(
UpsamplingBlock(num_channels[-1-i], num_channels[-2-i], num_channels[-2-i], kernel_size, strides, depth, conv_type, res))
module.bottlenecks = nn.ModuleList(
[ConvLayer(num_channels[-1], num_channels[-1], kernel_size, 1, conv_type) for _ in range(depth)])
# Output conv
outputs = num_outputs if separate else num_outputs * len(instruments)
module.output_conv = nn.Conv1d(num_channels[0], outputs, 1)
self.waveunets[instrument] = module
self.set_output_size(target_output_size)
def set_output_size(self, target_output_size):
self.target_output_size = target_output_size
self.input_size, self.output_size = self.check_padding(target_output_size)
print("Using valid convolutions with " + str(self.input_size) + " inputs and " + str(self.output_size) + " outputs")
assert((self.input_size - self.output_size) % 2 == 0)
self.shapes = {"output_start_frame" : (self.input_size - self.output_size) // 2,
"output_end_frame" : (self.input_size - self.output_size) // 2 + self.output_size,
"output_frames" : self.output_size,
"input_frames" : self.input_size}
def check_padding(self, target_output_size):
# Ensure number of outputs covers a whole number of cycles so each output in the cycle is weighted equally during training
bottleneck = 1
while True:
out = self.check_padding_for_bottleneck(bottleneck, target_output_size)
if out is not False:
return out
bottleneck += 1
def check_padding_for_bottleneck(self, bottleneck, target_output_size):
module = self.waveunets[[k for k in self.waveunets.keys()][0]]
try:
curr_size = bottleneck
for idx, block in enumerate(module.upsampling_blocks):
curr_size = block.get_output_size(curr_size)
output_size = curr_size
# Bottleneck-Conv
curr_size = bottleneck
for block in reversed(module.bottlenecks):
curr_size = block.get_input_size(curr_size)
for idx, block in enumerate(reversed(module.downsampling_blocks)):
curr_size = block.get_input_size(curr_size)
assert(output_size >= target_output_size)
return curr_size, output_size
except AssertionError as e:
return False
def forward_module(self, x, module):
'''
A forward pass through a single Wave-U-Net (multiple Wave-U-Nets might be used, one for each source)
:param x: Input mix
:param module: Network module to be used for prediction
:return: Source estimates
'''
shortcuts = []
out = x
# DOWNSAMPLING BLOCKS
for block in module.downsampling_blocks:
out, short = block(out)
shortcuts.append(short)
# BOTTLENECK CONVOLUTION
for conv in module.bottlenecks:
out = conv(out)
# UPSAMPLING BLOCKS
for idx, block in enumerate(module.upsampling_blocks):
out = block(out, shortcuts[-1 - idx])
# OUTPUT CONV
out = module.output_conv(out)
if not self.training: # At test time clip predictions to valid amplitude range
out = out.clamp(min=-1.0, max=1.0)
return out
def forward(self, x, inst=None):
curr_input_size = x.shape[-1]
assert(curr_input_size == self.input_size) # User promises to feed the proper input himself, to get the pre-calculated (NOT the originally desired) output size
if self.separate:
return {inst : self.forward_module(x, self.waveunets[inst])}
else:
assert(len(self.waveunets) == 1)
out = self.forward_module(x, self.waveunets["ALL"])
out_dict = {}
for idx, inst in enumerate(self.instruments):
out_dict[inst] = out[:, idx * self.num_outputs:(idx + 1) * self.num_outputs]
return out_dict |