Spaces:
Runtime error
Runtime error
Upload conv.py
Browse files- model/conv.py +72 -0
model/conv.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn as nn
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
|
5 |
+
class ConvLayer(nn.Module):
|
6 |
+
def __init__(self, n_inputs, n_outputs, kernel_size, stride, conv_type, transpose=False):
|
7 |
+
super(ConvLayer, self).__init__()
|
8 |
+
self.transpose = transpose
|
9 |
+
self.stride = stride
|
10 |
+
self.kernel_size = kernel_size
|
11 |
+
self.conv_type = conv_type
|
12 |
+
|
13 |
+
# How many channels should be normalised as one group if GroupNorm is activated
|
14 |
+
# WARNING: Number of channels has to be divisible by this number!
|
15 |
+
NORM_CHANNELS = 8
|
16 |
+
|
17 |
+
if self.transpose:
|
18 |
+
self.filter = nn.ConvTranspose1d(n_inputs, n_outputs, self.kernel_size, stride, padding=kernel_size-1)
|
19 |
+
else:
|
20 |
+
self.filter = nn.Conv1d(n_inputs, n_outputs, self.kernel_size, stride)
|
21 |
+
|
22 |
+
if conv_type == "gn":
|
23 |
+
assert(n_outputs % NORM_CHANNELS == 0)
|
24 |
+
self.norm = nn.GroupNorm(n_outputs // NORM_CHANNELS, n_outputs)
|
25 |
+
elif conv_type == "bn":
|
26 |
+
self.norm = nn.BatchNorm1d(n_outputs, momentum=0.01)
|
27 |
+
# Add you own types of variations here!
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
# Apply the convolution
|
31 |
+
if self.conv_type == "gn" or self.conv_type == "bn":
|
32 |
+
out = F.relu(self.norm((self.filter(x))))
|
33 |
+
else: # Add your own variations here with elifs conditioned on "conv_type" parameter!
|
34 |
+
assert(self.conv_type == "normal")
|
35 |
+
out = F.leaky_relu(self.filter(x))
|
36 |
+
return out
|
37 |
+
|
38 |
+
def get_input_size(self, output_size):
|
39 |
+
# Strided conv/decimation
|
40 |
+
if not self.transpose:
|
41 |
+
curr_size = (output_size - 1)*self.stride + 1 # o = (i-1)//s + 1 => i = (o - 1)*s + 1
|
42 |
+
else:
|
43 |
+
curr_size = output_size
|
44 |
+
|
45 |
+
# Conv
|
46 |
+
curr_size = curr_size + self.kernel_size - 1 # o = i + p - k + 1
|
47 |
+
|
48 |
+
# Transposed
|
49 |
+
if self.transpose:
|
50 |
+
assert ((curr_size - 1) % self.stride == 0)# We need to have a value at the beginning and end
|
51 |
+
curr_size = ((curr_size - 1) // self.stride) + 1
|
52 |
+
assert(curr_size > 0)
|
53 |
+
return curr_size
|
54 |
+
|
55 |
+
def get_output_size(self, input_size):
|
56 |
+
# Transposed
|
57 |
+
if self.transpose:
|
58 |
+
assert(input_size > 1)
|
59 |
+
curr_size = (input_size - 1)*self.stride + 1 # o = (i-1)//s + 1 => i = (o - 1)*s + 1
|
60 |
+
else:
|
61 |
+
curr_size = input_size
|
62 |
+
|
63 |
+
# Conv
|
64 |
+
curr_size = curr_size - self.kernel_size + 1 # o = i + p - k + 1
|
65 |
+
assert (curr_size > 0)
|
66 |
+
|
67 |
+
# Strided conv/decimation
|
68 |
+
if not self.transpose:
|
69 |
+
assert ((curr_size - 1) % self.stride == 0) # We need to have a value at the beginning and end
|
70 |
+
curr_size = ((curr_size - 1) // self.stride) + 1
|
71 |
+
|
72 |
+
return curr_size
|