Spaces:
Runtime error
Runtime error
Upload test.py
Browse files
test.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import museval
|
2 |
+
from tqdm import tqdm
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
|
7 |
+
import data.utils
|
8 |
+
import model.utils as model_utils
|
9 |
+
import utils
|
10 |
+
|
11 |
+
def compute_model_output(model, inputs):
|
12 |
+
'''
|
13 |
+
Computes outputs of model with given inputs. Does NOT allow propagating gradients! See compute_loss for training.
|
14 |
+
Procedure depends on whether we have one model for each source or not
|
15 |
+
:param model: Model to train with
|
16 |
+
:param compute_grad: Whether to compute gradients
|
17 |
+
:return: Model outputs, Average loss over batch
|
18 |
+
'''
|
19 |
+
all_outputs = {}
|
20 |
+
|
21 |
+
if model.separate:
|
22 |
+
for inst in model.instruments:
|
23 |
+
output = model(inputs, inst)
|
24 |
+
all_outputs[inst] = output[inst].detach().clone()
|
25 |
+
else:
|
26 |
+
all_outputs = model(inputs)
|
27 |
+
|
28 |
+
return all_outputs
|
29 |
+
|
30 |
+
def predict(audio, model):
|
31 |
+
'''
|
32 |
+
Predict sources for a given audio input signal, with a given model. Audio is split into chunks to make predictions on each chunk before they are concatenated.
|
33 |
+
:param audio: Audio input tensor, either Pytorch tensor or numpy array
|
34 |
+
:param model: Pytorch model
|
35 |
+
:return: Source predictions, dictionary with source names as keys
|
36 |
+
'''
|
37 |
+
if isinstance(audio, torch.Tensor):
|
38 |
+
is_cuda = audio.is_cuda()
|
39 |
+
audio = audio.detach().cpu().numpy()
|
40 |
+
return_mode = "pytorch"
|
41 |
+
else:
|
42 |
+
return_mode = "numpy"
|
43 |
+
|
44 |
+
expected_outputs = audio.shape[1]
|
45 |
+
|
46 |
+
# Pad input if it is not divisible in length by the frame shift number
|
47 |
+
output_shift = model.shapes["output_frames"]
|
48 |
+
pad_back = audio.shape[1] % output_shift
|
49 |
+
pad_back = 0 if pad_back == 0 else output_shift - pad_back
|
50 |
+
if pad_back > 0:
|
51 |
+
audio = np.pad(audio, [(0,0), (0, pad_back)], mode="constant", constant_values=0.0)
|
52 |
+
|
53 |
+
target_outputs = audio.shape[1]
|
54 |
+
outputs = {key: np.zeros(audio.shape, np.float32) for key in model.instruments}
|
55 |
+
|
56 |
+
# Pad mixture across time at beginning and end so that neural network can make prediction at the beginning and end of signal
|
57 |
+
pad_front_context = model.shapes["output_start_frame"]
|
58 |
+
pad_back_context = model.shapes["input_frames"] - model.shapes["output_end_frame"]
|
59 |
+
audio = np.pad(audio, [(0,0), (pad_front_context, pad_back_context)], mode="constant", constant_values=0.0)
|
60 |
+
|
61 |
+
# Iterate over mixture magnitudes, fetch network prediction
|
62 |
+
with torch.no_grad():
|
63 |
+
for target_start_pos in range(0, target_outputs, model.shapes["output_frames"]):
|
64 |
+
# Prepare mixture excerpt by selecting time interval
|
65 |
+
curr_input = audio[:, target_start_pos:target_start_pos + model.shapes["input_frames"]] # Since audio was front-padded input of [targetpos:targetpos+inputframes] actually predicts [targetpos:targetpos+outputframes] target range
|
66 |
+
|
67 |
+
# Convert to Pytorch tensor for model prediction
|
68 |
+
curr_input = torch.from_numpy(curr_input).unsqueeze(0)
|
69 |
+
|
70 |
+
# Predict
|
71 |
+
for key, curr_targets in compute_model_output(model, curr_input).items():
|
72 |
+
outputs[key][:,target_start_pos:target_start_pos+model.shapes["output_frames"]] = curr_targets.squeeze(0).cpu().numpy()
|
73 |
+
|
74 |
+
# Crop to expected length (since we padded to handle the frame shift)
|
75 |
+
outputs = {key : outputs[key][:,:expected_outputs] for key in outputs.keys()}
|
76 |
+
|
77 |
+
if return_mode == "pytorch":
|
78 |
+
outputs = torch.from_numpy(outputs)
|
79 |
+
if is_cuda:
|
80 |
+
outputs = outputs.cuda()
|
81 |
+
return outputs
|
82 |
+
|
83 |
+
def predict_song(args, audio_path, model):
|
84 |
+
'''
|
85 |
+
Predicts sources for an audio file for which the file path is given, using a given model.
|
86 |
+
Takes care of resampling the input audio to the models sampling rate and resampling predictions back to input sampling rate.
|
87 |
+
:param args: Options dictionary
|
88 |
+
:param audio_path: Path to mixture audio file
|
89 |
+
:param model: Pytorch model
|
90 |
+
:return: Source estimates given as dictionary with keys as source names
|
91 |
+
'''
|
92 |
+
model.eval()
|
93 |
+
|
94 |
+
# Load mixture in original sampling rate
|
95 |
+
mix_audio, mix_sr = data.utils.load(audio_path, sr=None, mono=False)
|
96 |
+
mix_channels = mix_audio.shape[0]
|
97 |
+
mix_len = mix_audio.shape[1]
|
98 |
+
|
99 |
+
# Adapt mixture channels to required input channels
|
100 |
+
if args.channels == 1:
|
101 |
+
mix_audio = np.mean(mix_audio, axis=0, keepdims=True)
|
102 |
+
else:
|
103 |
+
if mix_channels == 1: # Duplicate channels if input is mono but model is stereo
|
104 |
+
mix_audio = np.tile(mix_audio, [args.channels, 1])
|
105 |
+
else:
|
106 |
+
assert(mix_channels == args.channels)
|
107 |
+
|
108 |
+
# resample to model sampling rate
|
109 |
+
mix_audio = data.utils.resample(mix_audio, mix_sr, args.sr)
|
110 |
+
|
111 |
+
sources = predict(mix_audio, model)
|
112 |
+
|
113 |
+
# Resample back to mixture sampling rate in case we had model on different sampling rate
|
114 |
+
sources = {key : data.utils.resample(sources[key], args.sr, mix_sr) for key in sources.keys()}
|
115 |
+
|
116 |
+
# In case we had to pad the mixture at the end, or we have a few samples too many due to inconsistent down- and upsamṕling, remove those samples from source prediction now
|
117 |
+
for key in sources.keys():
|
118 |
+
diff = sources[key].shape[1] - mix_len
|
119 |
+
if diff > 0:
|
120 |
+
print("WARNING: Cropping " + str(diff) + " samples")
|
121 |
+
sources[key] = sources[key][:, :-diff]
|
122 |
+
elif diff < 0:
|
123 |
+
print("WARNING: Padding output by " + str(diff) + " samples")
|
124 |
+
sources[key] = np.pad(sources[key], [(0,0), (0, -diff)], "constant", 0.0)
|
125 |
+
|
126 |
+
# Adapt channels
|
127 |
+
if mix_channels > args.channels:
|
128 |
+
assert(args.channels == 1)
|
129 |
+
# Duplicate mono predictions
|
130 |
+
sources[key] = np.tile(sources[key], [mix_channels, 1])
|
131 |
+
elif mix_channels < args.channels:
|
132 |
+
assert(mix_channels == 1)
|
133 |
+
# Reduce model output to mono
|
134 |
+
sources[key] = np.mean(sources[key], axis=0, keepdims=True)
|
135 |
+
|
136 |
+
sources[key] = np.asfortranarray(sources[key]) # So librosa does not complain if we want to save it
|
137 |
+
|
138 |
+
return sources
|
139 |
+
|
140 |
+
def evaluate(args, dataset, model, instruments):
|
141 |
+
'''
|
142 |
+
Evaluates a given model on a given dataset
|
143 |
+
:param args: Options dict
|
144 |
+
:param dataset: Dataset object
|
145 |
+
:param model: Pytorch model
|
146 |
+
:param instruments: List of source names
|
147 |
+
:return: Performance metric dictionary, list with each element describing one dataset sample's results
|
148 |
+
'''
|
149 |
+
perfs = list()
|
150 |
+
model.eval()
|
151 |
+
with torch.no_grad():
|
152 |
+
for example in dataset:
|
153 |
+
print("Evaluating " + example["mix"])
|
154 |
+
|
155 |
+
# Load source references in their original sr and channel number
|
156 |
+
target_sources = np.stack([data.utils.load(example[instrument], sr=None, mono=False)[0].T for instrument in instruments])
|
157 |
+
|
158 |
+
# Predict using mixture
|
159 |
+
pred_sources = predict_song(args, example["mix"], model)
|
160 |
+
pred_sources = np.stack([pred_sources[key].T for key in instruments])
|
161 |
+
|
162 |
+
# Evaluate
|
163 |
+
SDR, ISR, SIR, SAR, _ = museval.metrics.bss_eval(target_sources, pred_sources)
|
164 |
+
song = {}
|
165 |
+
for idx, name in enumerate(instruments):
|
166 |
+
song[name] = {"SDR" : SDR[idx], "ISR" : ISR[idx], "SIR" : SIR[idx], "SAR" : SAR[idx]}
|
167 |
+
perfs.append(song)
|
168 |
+
|
169 |
+
return perfs
|
170 |
+
|
171 |
+
|
172 |
+
def validate(args, model, criterion, test_data):
|
173 |
+
'''
|
174 |
+
Iterate with a given model over a given test dataset and compute the desired loss
|
175 |
+
:param args: Options dictionary
|
176 |
+
:param model: Pytorch model
|
177 |
+
:param criterion: Loss function to use (similar to Pytorch criterions)
|
178 |
+
:param test_data: Test dataset (Pytorch dataset)
|
179 |
+
:return:
|
180 |
+
'''
|
181 |
+
# PREPARE DATA
|
182 |
+
dataloader = torch.utils.data.DataLoader(test_data,
|
183 |
+
batch_size=args.batch_size,
|
184 |
+
shuffle=False,
|
185 |
+
num_workers=args.num_workers)
|
186 |
+
|
187 |
+
# VALIDATE
|
188 |
+
model.eval()
|
189 |
+
total_loss = 0.
|
190 |
+
with tqdm(total=len(test_data) // args.batch_size) as pbar, torch.no_grad():
|
191 |
+
for example_num, (x, targets) in enumerate(dataloader):
|
192 |
+
if args.cuda:
|
193 |
+
x = x.cuda()
|
194 |
+
for k in list(targets.keys()):
|
195 |
+
targets[k] = targets[k].cuda()
|
196 |
+
|
197 |
+
_, avg_loss = model_utils.compute_loss(model, x, targets, criterion)
|
198 |
+
|
199 |
+
total_loss += (1. / float(example_num + 1)) * (avg_loss - total_loss)
|
200 |
+
|
201 |
+
pbar.set_description("Current loss: {:.4f}".format(total_loss))
|
202 |
+
pbar.update(1)
|
203 |
+
|
204 |
+
return total_loss
|