Spaces:
Runtime error
Runtime error
Upload cog_predict.py
Browse files- cog_predict.py +144 -0
cog_predict.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cog
|
3 |
+
import tempfile
|
4 |
+
import zipfile
|
5 |
+
from pathlib import Path
|
6 |
+
import argparse
|
7 |
+
import data.utils
|
8 |
+
import model.utils as model_utils
|
9 |
+
from test import predict_song
|
10 |
+
from model.waveunet import Waveunet
|
11 |
+
|
12 |
+
|
13 |
+
class waveunetPredictor(cog.Predictor):
|
14 |
+
def setup(self):
|
15 |
+
"""Init wave u net model"""
|
16 |
+
parser = argparse.ArgumentParser()
|
17 |
+
parser.add_argument(
|
18 |
+
"--instruments",
|
19 |
+
type=str,
|
20 |
+
nargs="+",
|
21 |
+
default=["bass", "drums", "other", "vocals"],
|
22 |
+
help='List of instruments to separate (default: "bass drums other vocals")',
|
23 |
+
)
|
24 |
+
parser.add_argument(
|
25 |
+
"--cuda", action="store_true", help="Use CUDA (default: False)"
|
26 |
+
)
|
27 |
+
parser.add_argument(
|
28 |
+
"--features",
|
29 |
+
type=int,
|
30 |
+
default=32,
|
31 |
+
help="Number of feature channels per layer",
|
32 |
+
)
|
33 |
+
parser.add_argument(
|
34 |
+
"--load_model",
|
35 |
+
type=str,
|
36 |
+
default="checkpoints/waveunet/model",
|
37 |
+
help="Reload a previously trained model",
|
38 |
+
)
|
39 |
+
parser.add_argument("--batch_size", type=int, default=4, help="Batch size")
|
40 |
+
parser.add_argument(
|
41 |
+
"--levels", type=int, default=6, help="Number of DS/US blocks"
|
42 |
+
)
|
43 |
+
parser.add_argument(
|
44 |
+
"--depth", type=int, default=1, help="Number of convs per block"
|
45 |
+
)
|
46 |
+
parser.add_argument("--sr", type=int, default=44100, help="Sampling rate")
|
47 |
+
parser.add_argument(
|
48 |
+
"--channels", type=int, default=2, help="Number of input audio channels"
|
49 |
+
)
|
50 |
+
parser.add_argument(
|
51 |
+
"--kernel_size",
|
52 |
+
type=int,
|
53 |
+
default=5,
|
54 |
+
help="Filter width of kernels. Has to be an odd number",
|
55 |
+
)
|
56 |
+
parser.add_argument(
|
57 |
+
"--output_size", type=float, default=2.0, help="Output duration"
|
58 |
+
)
|
59 |
+
parser.add_argument(
|
60 |
+
"--strides", type=int, default=4, help="Strides in Waveunet"
|
61 |
+
)
|
62 |
+
parser.add_argument(
|
63 |
+
"--conv_type",
|
64 |
+
type=str,
|
65 |
+
default="gn",
|
66 |
+
help="Type of convolution (normal, BN-normalised, GN-normalised): normal/bn/gn",
|
67 |
+
)
|
68 |
+
parser.add_argument(
|
69 |
+
"--res",
|
70 |
+
type=str,
|
71 |
+
default="fixed",
|
72 |
+
help="Resampling strategy: fixed sinc-based lowpass filtering or learned conv layer: fixed/learned",
|
73 |
+
)
|
74 |
+
parser.add_argument(
|
75 |
+
"--separate",
|
76 |
+
type=int,
|
77 |
+
default=1,
|
78 |
+
help="Train separate model for each source (1) or only one (0)",
|
79 |
+
)
|
80 |
+
parser.add_argument(
|
81 |
+
"--feature_growth",
|
82 |
+
type=str,
|
83 |
+
default="double",
|
84 |
+
help="How the features in each layer should grow, either (add) the initial number of features each time, or multiply by 2 (double)",
|
85 |
+
)
|
86 |
+
"""
|
87 |
+
parser.add_argument('--input', type=str, default=str(input),
|
88 |
+
help="Path to input mixture to be separated")
|
89 |
+
parser.add_argument('--output', type=str, default=out_path, help="Output path (same folder as input path if not set)")
|
90 |
+
"""
|
91 |
+
args = parser.parse_args([])
|
92 |
+
self.args = args
|
93 |
+
|
94 |
+
num_features = (
|
95 |
+
[args.features * i for i in range(1, args.levels + 1)]
|
96 |
+
if args.feature_growth == "add"
|
97 |
+
else [args.features * 2 ** i for i in range(0, args.levels)]
|
98 |
+
)
|
99 |
+
target_outputs = int(args.output_size * args.sr)
|
100 |
+
self.model = Waveunet(
|
101 |
+
args.channels,
|
102 |
+
num_features,
|
103 |
+
args.channels,
|
104 |
+
args.instruments,
|
105 |
+
kernel_size=args.kernel_size,
|
106 |
+
target_output_size=target_outputs,
|
107 |
+
depth=args.depth,
|
108 |
+
strides=args.strides,
|
109 |
+
conv_type=args.conv_type,
|
110 |
+
res=args.res,
|
111 |
+
separate=args.separate,
|
112 |
+
)
|
113 |
+
|
114 |
+
if args.cuda:
|
115 |
+
self.model = model_utils.DataParallel(model)
|
116 |
+
print("move model to gpu")
|
117 |
+
self.model.cuda()
|
118 |
+
|
119 |
+
print("Loading model from checkpoint " + str(args.load_model))
|
120 |
+
state = model_utils.load_model(self.model, None, args.load_model, args.cuda)
|
121 |
+
print("Step", state["step"])
|
122 |
+
|
123 |
+
@cog.input("input", type=Path, help="audio mixture path")
|
124 |
+
def predict(self, input):
|
125 |
+
"""Separate tracks from input mixture audio"""
|
126 |
+
|
127 |
+
out_path = Path(tempfile.mkdtemp())
|
128 |
+
zip_path = Path(tempfile.mkdtemp()) / "output.zip"
|
129 |
+
|
130 |
+
preds = predict_song(self.args, input, self.model)
|
131 |
+
|
132 |
+
out_names = []
|
133 |
+
for inst in preds.keys():
|
134 |
+
temp_n = os.path.join(
|
135 |
+
str(out_path), os.path.basename(str(input)) + "_" + inst + ".wav"
|
136 |
+
)
|
137 |
+
data.utils.write_wav(temp_n, preds[inst], self.args.sr)
|
138 |
+
out_names.append(temp_n)
|
139 |
+
|
140 |
+
with zipfile.ZipFile(str(zip_path), "w") as zf:
|
141 |
+
for i in out_names:
|
142 |
+
zf.write(str(i))
|
143 |
+
|
144 |
+
return zip_path
|