import argparse import os import data.utils import model.utils as model_utils from test import predict_song from model.waveunet import Waveunet def main(args): # MODEL num_features = [args.features*i for i in range(1, args.levels+1)] if args.feature_growth == "add" else \ [args.features*2**i for i in range(0, args.levels)] target_outputs = int(args.output_size * args.sr) model = Waveunet(args.channels, num_features, args.channels, args.instruments, kernel_size=args.kernel_size, target_output_size=target_outputs, depth=args.depth, strides=args.strides, conv_type=args.conv_type, res=args.res, separate=args.separate) if args.cuda: model = model_utils.DataParallel(model) print("move model to gpu") model.cuda() print("Loading model from checkpoint " + str(args.load_model)) state = model_utils.load_model(model, None, args.load_model, args.cuda) print('Step', state['step']) preds = predict_song(args, args.input, model) output_folder = os.path.dirname(args.input) if args.output is None else args.output for inst in preds.keys(): data.utils.write_wav(os.path.join(output_folder, os.path.basename(args.input) + "_" + inst + ".wav"), preds[inst], args.sr) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--instruments', type=str, nargs='+', default=["bass", "drums", "other", "vocals"], help="List of instruments to separate (default: \"bass drums other vocals\")") parser.add_argument('--cuda', action='store_true', help='Use CUDA (default: False)') parser.add_argument('--features', type=int, default=32, help='Number of feature channels per layer') parser.add_argument('--load_model', type=str, default='checkpoints/waveunet/model', help='Reload a previously trained model') parser.add_argument('--batch_size', type=int, default=4, help="Batch size") parser.add_argument('--levels', type=int, default=6, help="Number of DS/US blocks") parser.add_argument('--depth', type=int, default=1, help="Number of convs per block") parser.add_argument('--sr', type=int, default=44100, help="Sampling rate") parser.add_argument('--channels', type=int, default=2, help="Number of input audio channels") parser.add_argument('--kernel_size', type=int, default=5, help="Filter width of kernels. Has to be an odd number") parser.add_argument('--output_size', type=float, default=2.0, help="Output duration") parser.add_argument('--strides', type=int, default=4, help="Strides in Waveunet") parser.add_argument('--conv_type', type=str, default="gn", help="Type of convolution (normal, BN-normalised, GN-normalised): normal/bn/gn") parser.add_argument('--res', type=str, default="fixed", help="Resampling strategy: fixed sinc-based lowpass filtering or learned conv layer: fixed/learned") parser.add_argument('--separate', type=int, default=1, help="Train separate model for each source (1) or only one (0)") parser.add_argument('--feature_growth', type=str, default="double", help="How the features in each layer should grow, either (add) the initial number of features each time, or multiply by 2 (double)") parser.add_argument('--input', type=str, default=os.path.join("audio_examples", "Cristina Vane - So Easy", "mix.mp3"), help="Path to input mixture to be separated") parser.add_argument('--output', type=str, default=None, help="Output path (same folder as input path if not set)") args = parser.parse_args() main(args)