import museval from tqdm import tqdm import numpy as np import torch import data.utils import model.utils as model_utils import utils def compute_model_output(model, inputs): ''' Computes outputs of model with given inputs. Does NOT allow propagating gradients! See compute_loss for training. Procedure depends on whether we have one model for each source or not :param model: Model to train with :param compute_grad: Whether to compute gradients :return: Model outputs, Average loss over batch ''' all_outputs = {} if model.separate: for inst in model.instruments: output = model(inputs, inst) all_outputs[inst] = output[inst].detach().clone() else: all_outputs = model(inputs) return all_outputs def predict(audio, model): ''' Predict sources for a given audio input signal, with a given model. Audio is split into chunks to make predictions on each chunk before they are concatenated. :param audio: Audio input tensor, either Pytorch tensor or numpy array :param model: Pytorch model :return: Source predictions, dictionary with source names as keys ''' if isinstance(audio, torch.Tensor): is_cuda = audio.is_cuda() audio = audio.detach().cpu().numpy() return_mode = "pytorch" else: return_mode = "numpy" expected_outputs = audio.shape[1] # Pad input if it is not divisible in length by the frame shift number output_shift = model.shapes["output_frames"] pad_back = audio.shape[1] % output_shift pad_back = 0 if pad_back == 0 else output_shift - pad_back if pad_back > 0: audio = np.pad(audio, [(0,0), (0, pad_back)], mode="constant", constant_values=0.0) target_outputs = audio.shape[1] outputs = {key: np.zeros(audio.shape, np.float32) for key in model.instruments} # Pad mixture across time at beginning and end so that neural network can make prediction at the beginning and end of signal pad_front_context = model.shapes["output_start_frame"] pad_back_context = model.shapes["input_frames"] - model.shapes["output_end_frame"] audio = np.pad(audio, [(0,0), (pad_front_context, pad_back_context)], mode="constant", constant_values=0.0) # Iterate over mixture magnitudes, fetch network prediction with torch.no_grad(): for target_start_pos in range(0, target_outputs, model.shapes["output_frames"]): # Prepare mixture excerpt by selecting time interval curr_input = audio[:, target_start_pos:target_start_pos + model.shapes["input_frames"]] # Since audio was front-padded input of [targetpos:targetpos+inputframes] actually predicts [targetpos:targetpos+outputframes] target range # Convert to Pytorch tensor for model prediction curr_input = torch.from_numpy(curr_input).unsqueeze(0) # Predict for key, curr_targets in compute_model_output(model, curr_input).items(): outputs[key][:,target_start_pos:target_start_pos+model.shapes["output_frames"]] = curr_targets.squeeze(0).cpu().numpy() # Crop to expected length (since we padded to handle the frame shift) outputs = {key : outputs[key][:,:expected_outputs] for key in outputs.keys()} if return_mode == "pytorch": outputs = torch.from_numpy(outputs) if is_cuda: outputs = outputs.cuda() return outputs def predict_song(args, audio_path, model): ''' Predicts sources for an audio file for which the file path is given, using a given model. Takes care of resampling the input audio to the models sampling rate and resampling predictions back to input sampling rate. :param args: Options dictionary :param audio_path: Path to mixture audio file :param model: Pytorch model :return: Source estimates given as dictionary with keys as source names ''' model.eval() # Load mixture in original sampling rate mix_audio, mix_sr = data.utils.load(audio_path, sr=None, mono=False) mix_channels = mix_audio.shape[0] mix_len = mix_audio.shape[1] # Adapt mixture channels to required input channels if args.channels == 1: mix_audio = np.mean(mix_audio, axis=0, keepdims=True) else: if mix_channels == 1: # Duplicate channels if input is mono but model is stereo mix_audio = np.tile(mix_audio, [args.channels, 1]) else: assert(mix_channels == args.channels) # resample to model sampling rate mix_audio = data.utils.resample(mix_audio, mix_sr, args.sr) sources = predict(mix_audio, model) # Resample back to mixture sampling rate in case we had model on different sampling rate sources = {key : data.utils.resample(sources[key], args.sr, mix_sr) for key in sources.keys()} # In case we had to pad the mixture at the end, or we have a few samples too many due to inconsistent down- and upsamṕling, remove those samples from source prediction now for key in sources.keys(): diff = sources[key].shape[1] - mix_len if diff > 0: print("WARNING: Cropping " + str(diff) + " samples") sources[key] = sources[key][:, :-diff] elif diff < 0: print("WARNING: Padding output by " + str(diff) + " samples") sources[key] = np.pad(sources[key], [(0,0), (0, -diff)], "constant", 0.0) # Adapt channels if mix_channels > args.channels: assert(args.channels == 1) # Duplicate mono predictions sources[key] = np.tile(sources[key], [mix_channels, 1]) elif mix_channels < args.channels: assert(mix_channels == 1) # Reduce model output to mono sources[key] = np.mean(sources[key], axis=0, keepdims=True) sources[key] = np.asfortranarray(sources[key]) # So librosa does not complain if we want to save it return sources def evaluate(args, dataset, model, instruments): ''' Evaluates a given model on a given dataset :param args: Options dict :param dataset: Dataset object :param model: Pytorch model :param instruments: List of source names :return: Performance metric dictionary, list with each element describing one dataset sample's results ''' perfs = list() model.eval() with torch.no_grad(): for example in dataset: print("Evaluating " + example["mix"]) # Load source references in their original sr and channel number target_sources = np.stack([data.utils.load(example[instrument], sr=None, mono=False)[0].T for instrument in instruments]) # Predict using mixture pred_sources = predict_song(args, example["mix"], model) pred_sources = np.stack([pred_sources[key].T for key in instruments]) # Evaluate SDR, ISR, SIR, SAR, _ = museval.metrics.bss_eval(target_sources, pred_sources) song = {} for idx, name in enumerate(instruments): song[name] = {"SDR" : SDR[idx], "ISR" : ISR[idx], "SIR" : SIR[idx], "SAR" : SAR[idx]} perfs.append(song) return perfs def validate(args, model, criterion, test_data): ''' Iterate with a given model over a given test dataset and compute the desired loss :param args: Options dictionary :param model: Pytorch model :param criterion: Loss function to use (similar to Pytorch criterions) :param test_data: Test dataset (Pytorch dataset) :return: ''' # PREPARE DATA dataloader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) # VALIDATE model.eval() total_loss = 0. with tqdm(total=len(test_data) // args.batch_size) as pbar, torch.no_grad(): for example_num, (x, targets) in enumerate(dataloader): if args.cuda: x = x.cuda() for k in list(targets.keys()): targets[k] = targets[k].cuda() _, avg_loss = model_utils.compute_loss(model, x, targets, criterion) total_loss += (1. / float(example_num + 1)) * (avg_loss - total_loss) pbar.set_description("Current loss: {:.4f}".format(total_loss)) pbar.update(1) return total_loss