File size: 5,889 Bytes
d6890dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import cv2
import streamlit as st
import numpy as np
import tempfile
import os
from ultralytics import YOLO
from streamlit_webrtc import  (webrtc_streamer, VideoProcessorBase, WebRtcMode, RTCConfiguration)
import av
from turn import get_ice_servers

model = YOLO('yolov8n.pt') 

# Global variable to store the latest frame with bounding boxes
cached_frame = None
frame_skip = 5  # Process every 5th frame
# # Define a custom video processor class inheriting from VideoProcessorBase
# class VideoProcessor(VideoProcessorBase):
#     def __init__(self):
#         self.model = model
#         self.frame_skip = 10  # Class-level variable for frame skipping
#         self.cached_frame = None  # Class-level variable for cached frames
        
def recv(frame: av.VideoFrame) -> av.VideoFrame:
                # Skip frames to reduce processing load
                # global frame_skip, cached_frame
                
                # if frame_skip > 0:
                #     frame_skip -= 1
                #     return frame
        
                # Reset frame skip
                # frame_skip = 5
        
                # Convert frame to OpenCV format (BGR)
                frame_bgr = frame.to_ndarray(format="bgr24")
        
                # Resize frame to reduce processing time
                frame_resized = cv2.resize(frame_bgr, (160, 120)) # Instead of 640x480
        
                # # Detect and track objects using YOLOv8
                # results = model.track(frame_resized, persist=True)
        
                # # Plot results
                # frame_annotated = results[0].plot()
        
                # # Cache the annotated frame
                # cached_frame = frame_annotated
        
        
                # Process every nth frame
                if  frame_skip == 0:
                    # Reset the frame skip counter
                    frame_skip = 10
        
                    # Detect and track objects using YOLOv8
                    results = model.track(frame_resized, persist=True)
        
                    # Plot results
                    frame_annotated = results[0].plot()
        
                    # Cache the annotated frame
                    cached_frame = frame_annotated
                else:
                    # Use the cached frame for skipped frames
                    frame_annotated = cached_frame if cached_frame is not None else frame_resized
                    frame_skip -= 1
        
                # Convert frame back to RGB format
                frame_rgb = cv2.cvtColor(frame_annotated, cv2.COLOR_BGR2RGB)
        
                return av.VideoFrame.from_ndarray(frame_rgb, format="rgb24")

# Streamlit web app
def main():
    # Set page title
    st.set_page_config(page_title="Object Tracking with Streamlit")

    # Streamlit web app
    st.title("Object Tracking")

    # Radio button for user selection
    option = st.radio("Choose an option:", ("Live Stream", "Upload Video"))

    if option == "Live Stream":
        # Start the WebRTC stream with object tracking
        # WebRTC streamer configuration
        # Define RTC configuration for WebRTC
        # RTC_CONFIGURATION = RTCConfiguration({
        #     "iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]
        # })
        # Start the WebRTC stream with object tracking
        # webrtc_streamer(key="live-stream", video_frame_callback=recv,
        #                 rtc_configuration=rtc_configuration, sendback_audio=False)
        webrtc_streamer(key="live-stream", 
                #mode=WebRtcMode.SENDRECV,  
                video_frame_callback=recv,
                rtc_configuration={"iceServers": get_ice_servers()},
                media_stream_constraints={"video": True, "audio": False},
                async_processing=True)



    elif option == "Upload Video":
        # File uploader for video upload
        uploaded_file = st.file_uploader("Upload a video file", type=["mp4", "avi", "mov"])

        # Button to start tracking
        start_button_pressed = st.button("Start Tracking")

        # Placeholder for video frame
        frame_placeholder = st.empty()

        # Button to stop tracking
        stop_button_pressed = st.button("Stop")

        # Check if the start button is pressed and file is uploaded
        if start_button_pressed and uploaded_file is not None:
            # Call the function to track uploaded video with the stop button state
            track_uploaded_video(uploaded_file, stop_button_pressed, frame_placeholder)

        # Release resources
        if uploaded_file:
            uploaded_file.close()

# Function to perform object tracking on uploaded video
def track_uploaded_video(video_file, stop_button, frame_placeholder):

    # Create a temporary file to save the uploaded video
    temp_video = tempfile.NamedTemporaryFile(delete=False)
    temp_video.write(video_file.read())
    temp_video.close()

    # OpenCV's VideoCapture for reading video file
    cap = cv2.VideoCapture(temp_video.name)

    frame_count = 0
    while cap.isOpened() and not stop_button:
        ret, frame = cap.read()
        
        if not ret:
            st.write("The video capture has ended.")
            break

        # Process every 5th frame
        if frame_count % 5 == 0:
            # Resize frame to reduce processing time
            frame_resized = cv2.resize(frame, (640, 480))

            # Detect and track objects using YOLOv8
            results = model.track(frame_resized, persist=True)

            # Plot results
            frame_ = results[0].plot()

            # Display frame with bounding boxes
            frame_placeholder.image(frame_, channels="BGR")

        frame_count += 1

    # Release resources
    cap.release()
    # Remove temporary file
    os.remove(temp_video.name)

# Run the app
if __name__ == "__main__":
    main()