Spaces:
Configuration error
Configuration error
import torch | |
from transformers import Trainer, TrainingArguments | |
from my_custom_model import MyCustomModel # import your custom model class here | |
from my_dataset import MyDataset # import your dataset class here | |
# Instantiate the tokenizer | |
tokenizer = ... # define your tokenizer here | |
# Load the dataset and preprocess it | |
train_dataset = MyDataset(...) # define your training dataset here | |
val_dataset = MyDataset(...) # define your validation dataset here | |
# Define your custom model and the training arguments | |
model = MyCustomModel(...) # define your custom model here | |
training_args = TrainingArguments( | |
output_dir='./results', | |
evaluation_strategy='epoch', | |
learning_rate=2e-4, | |
per_device_train_batch_size=16, | |
per_device_eval_batch_size=16, | |
num_train_epochs=1, | |
weight_decay=0.01, | |
) | |
# Define the trainer and train the model | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=val_dataset, | |
) | |
trainer.train() | |
# Save the trained model | |
model_path = './trained_model' | |
model.save_pretrained(model_path) | |
# Load the trained model | |
model = MyCustomModel.from_pretrained(model_path) | |
# Define your inference function | |
def answer_question(input_text): | |
# Tokenize the input text | |
input_ids = tokenizer.encode(input_text, return_tensors='pt') | |
# Generate the answer | |
answer_ids = model.generate(input_ids) | |
answer = tokenizer.decode(answer_ids[0], skip_special_tokens=True) | |
return answer | |
# Test the model with an example input | |
input_text = "Your input text here" | |
answer = answer_question(input_text) | |
print(answer) | |