Spaces:
Configuration error
Configuration error
import torch | |
import streamlit as st | |
import numpy as np | |
class Net(torch.nn.Module): | |
def __init__(self, input_size, hidden_size, output_size): | |
super(Net, self).__init__() | |
self.hidden = torch.nn.Linear(input_size, hidden_size) | |
self.relu = torch.nn.ReLU() | |
self.output = torch.nn.Linear(hidden_size, output_size) | |
self.sigmoid = torch.nn.Sigmoid() | |
def forward(self, x): | |
hidden = self.hidden(x) | |
relu = self.relu(hidden) | |
output = self.output(relu) | |
output = self.sigmoid(output) | |
return output | |
def load_model(path): | |
model = Net(2, 5, 1) | |
model.load_state_dict(torch.load(path)) | |
return model | |
def predict(model, input_data): | |
with torch.no_grad(): | |
output = model(input_data) | |
return output.numpy() | |
def main(): | |
st.title("PyTorch Model Predictor") | |
uploaded_file = st.file_uploader("Choose a PyTorch model file (.pt)", type="pt") | |
if uploaded_file is not None: | |
model = load_model(uploaded_file) | |
st.success("Model loaded successfully.") | |
st.header("Make a Prediction") | |
input_data = np.array([st.number_input("Input 1"), st.number_input("Input 2")]) | |
if st.button("Predict"): | |
prediction = predict(model, torch.from_numpy(input_data).float().to('cpu')) | |
st.write("Prediction:", prediction.item()) | |
else: | |
st.warning("Please upload a PyTorch model file (.pt).") | |
if __name__ == "__main__": | |
main() | |