File size: 2,111 Bytes
5fde9f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# load model once
import torch
from peft import AutoPeftModelForCausalLM
from transformers import  AutoModelForCausalLM, AutoTokenizer

model_id = "hikinegi/Llama-JAVA_tuned"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoPeftModelForCausalLM.from_pretrained(model_id, device_map='auto', torch_dtype=torch.float16)

# Set the model to evaluation mode
model.eval()

def generate_pred(text):
    # Disable gradient calculation
    with torch.no_grad():
        # generate
        text=f"<s>[INST]<<SYS>>\nBelow is an instruction that describes a task. Write a response that appropriately completes the request.\n<</SYS>>\n{text}[/INST]"
        inputs = tokenizer(text, return_tensors="pt").to("cuda")
        outputs = model.generate(input_ids=inputs["input_ids"], 
                                 attention_mask=inputs["attention_mask"],
                                 max_new_tokens=1024, 
                                 pad_token_id=tokenizer.eos_token_id)
        return (tokenizer.decode(outputs[0], skip_special_tokens=False))

import gradio as gr
import random
import time

with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
    gr.Markdown("""<h1><center>CodeGuru will answer all of your'e JAVA coding Question</center></h1> """)
    chatbot = gr.Chatbot(label="CodeGuru")
    msg = gr.Textbox(label = "Question")
    clear = gr.ClearButton([msg, chatbot])

    def user(user_message, history):
        return "", history + [[user_message, None]]

    def bot(history):
        bot_message = generate_pred(history[-1][0])
        history[-1][1] = ""
        for character in bot_message:
            history[-1][1] += character
            time.sleep(0.05)
            yield history

    msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
        bot, chatbot, chatbot
    )
    clear.click(lambda: None, None, chatbot, queue=False)

    with gr.Row(visible=True) as button_row:
        upvote_btn = gr.Button(value="πŸ‘  Upvote", interactive=True)
        downvote_btn = gr.Button(value="πŸ‘Ž  Downvote", interactive=True)

demo.queue()
demo.launch(debug=True)