Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer
|
3 |
+
|
4 |
+
# Hugging Face model_path
|
5 |
+
model_path = 'psmathur/orca_mini_3b'
|
6 |
+
tokenizer = LlamaTokenizer.from_pretrained(model_path)
|
7 |
+
model = LlamaForCausalLM.from_pretrained(
|
8 |
+
model_path, torch_dtype=torch.float16, device_map='auto',
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
+
#generate text function
|
13 |
+
def predict(system, instruction, input=None):
|
14 |
+
|
15 |
+
if input:
|
16 |
+
prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
|
17 |
+
else:
|
18 |
+
prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Response:\n"
|
19 |
+
|
20 |
+
tokens = tokenizer.encode(prompt)
|
21 |
+
tokens = torch.LongTensor(tokens).unsqueeze(0)
|
22 |
+
tokens = tokens.to('cuda')
|
23 |
+
|
24 |
+
instance = {'input_ids': tokens,'top_p': 1.0, 'temperature':0.7, 'generate_len': 1024, 'top_k': 50}
|
25 |
+
|
26 |
+
length = len(tokens[0])
|
27 |
+
with torch.no_grad():
|
28 |
+
rest = model.generate(
|
29 |
+
input_ids=tokens,
|
30 |
+
max_length=length+instance['generate_len'],
|
31 |
+
use_cache=True,
|
32 |
+
do_sample=True,
|
33 |
+
top_p=instance['top_p'],
|
34 |
+
temperature=instance['temperature'],
|
35 |
+
top_k=instance['top_k']
|
36 |
+
)
|
37 |
+
output = rest[0][length:]
|
38 |
+
string = tokenizer.decode(output, skip_special_tokens=True)
|
39 |
+
return f'[!] Response: {string}'
|
40 |
+
|
41 |
+
import gradio as gr
|
42 |
+
|
43 |
+
# Define input components
|
44 |
+
prompt_input = gr.inputs.Textbox(label="System")
|
45 |
+
instruction_input = gr.inputs.Textbox(label="Instruction")
|
46 |
+
context_input = gr.inputs.Textbox(label="Context")
|
47 |
+
|
48 |
+
# Define output component
|
49 |
+
output_text = gr.outputs.Textbox(label="Output")
|
50 |
+
|
51 |
+
# Create the interface
|
52 |
+
iface=gr.Interface(fn=predict,
|
53 |
+
inputs=[prompt_input, instruction_input, context_input],
|
54 |
+
outputs=output_text,enable_queue=True)
|
55 |
+
iface.launch()
|