Hikmat Farhat commited on
Commit
0e485af
·
1 Parent(s): 3aa55a9

put the digits in the sidebar

Browse files
Files changed (1) hide show
  1. app.py +5 -3
app.py CHANGED
@@ -7,8 +7,9 @@ import torch
7
  from torchvision.datasets import MNIST
8
  from torchvision.transforms import ToTensor
9
  import numpy as np
10
- st.title("Streamlit GUI")
11
-
 
12
  classifier=AutoModel.from_pretrained("hikmatfarhat/MNIST_Classifier",trust_remote_code=True)
13
  softmax=torch.nn.Softmax(dim=1)
14
  np.set_printoptions(precision=3,suppress=True)
@@ -16,7 +17,8 @@ imgs=[]
16
 
17
  for i in range(15):
18
  imgs.append(Image.open(f"img{i}.png"))
19
- image=image_select("select a digit",imgs,use_container_width=False)
 
20
  image=ToTensor()(image)
21
  output=classifier(image)
22
  output=torch.squeeze(softmax(output))
 
7
  from torchvision.datasets import MNIST
8
  from torchvision.transforms import ToTensor
9
  import numpy as np
10
+ st.title("MNIST classifier")
11
+ st.markdown("This is a simple MNIST classifier using a simple neural network")
12
+ st.markdown("select a digit from the sidebar and the classifier will give you the probability of each digit")
13
  classifier=AutoModel.from_pretrained("hikmatfarhat/MNIST_Classifier",trust_remote_code=True)
14
  softmax=torch.nn.Softmax(dim=1)
15
  np.set_printoptions(precision=3,suppress=True)
 
17
 
18
  for i in range(15):
19
  imgs.append(Image.open(f"img{i}.png"))
20
+ with st.sidebar:
21
+ image=image_select("select a digit",imgs,use_container_width=False)
22
  image=ToTensor()(image)
23
  output=classifier(image)
24
  output=torch.squeeze(softmax(output))