Spaces:
Sleeping
Sleeping
Add Gradio application
Browse files
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
3 |
+
from qwen_vl_utils import process_vision_info
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# Hugging Face 模型仓库路径
|
8 |
+
model_path = "hiko1999/Qwen2-Wildfire-VL-2B-Instruct" # 替换为你的模型路径
|
9 |
+
|
10 |
+
# 加载 Hugging Face 上的模型和 processor
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
12 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map="auto")
|
13 |
+
processor = AutoProcessor.from_pretrained(model_path)
|
14 |
+
|
15 |
+
# 定义预测函数
|
16 |
+
def predict(image):
|
17 |
+
# 将上传的图片处理为模型需要的格式
|
18 |
+
messages = [{"role": "user",
|
19 |
+
"content": [{"type": "image", "image": image}, {"type": "text", "text": "Describe this image."}]}]
|
20 |
+
|
21 |
+
# 处理图片输入
|
22 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
23 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
24 |
+
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt")
|
25 |
+
inputs = inputs.to("cuda") # 转移到GPU
|
26 |
+
|
27 |
+
# 生成模型输出
|
28 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
29 |
+
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
30 |
+
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True,
|
31 |
+
clean_up_tokenization_spaces=False)
|
32 |
+
|
33 |
+
return output_text[0] # 返回生成的文本
|
34 |
+
|
35 |
+
# Gradio界面
|
36 |
+
def gradio_interface(image):
|
37 |
+
result = predict(image)
|
38 |
+
return f"预测结果:{result}"
|
39 |
+
|
40 |
+
# 创建Gradio接口
|
41 |
+
interface = gr.Interface(fn=gradio_interface,
|
42 |
+
inputs=gr.Image(type="pil"), # 输入的图像
|
43 |
+
outputs="text", # 输出结果
|
44 |
+
title="火灾场景多模态模型预测",
|
45 |
+
description="上传图片进行火灾预测。")
|
46 |
+
|
47 |
+
# 启动接口
|
48 |
+
interface.launch()
|