Spaces:
Running
on
Zero
Running
on
Zero
File size: 42,746 Bytes
e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c 7c56def e73da9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 |
import torch
from diffusers import DDIMScheduler, CosineDPMSolverMultistepScheduler
from diffusers.schedulers.scheduling_dpmsolver_sde import BrownianTreeNoiseSampler
from diffusers import AudioLDM2Pipeline, StableAudioPipeline
from transformers import RobertaTokenizer, RobertaTokenizerFast, VitsTokenizer
from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput
from diffusers.models.embeddings import get_1d_rotary_pos_embed
from typing import Any, Dict, List, Optional, Tuple, Union
import gradio as gr
class PipelineWrapper(torch.nn.Module):
def __init__(self, model_id: str,
device: torch.device,
double_precision: bool = False,
token: Optional[str] = None, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.model_id = model_id
self.device = device
self.double_precision = double_precision
self.token = token
def get_sigma(self, timestep: int) -> float:
sqrt_recipm1_alphas_cumprod = torch.sqrt(1.0 / self.model.scheduler.alphas_cumprod - 1)
return sqrt_recipm1_alphas_cumprod[timestep]
def load_scheduler(self) -> None:
pass
def get_fn_STFT(self) -> torch.nn.Module:
pass
def get_sr(self) -> int:
return 16000
def vae_encode(self, x: torch.Tensor) -> torch.Tensor:
pass
def vae_decode(self, x: torch.Tensor) -> torch.Tensor:
pass
def decode_to_mel(self, x: torch.Tensor) -> torch.Tensor:
pass
def setup_extra_inputs(self, *args, **kwargs) -> None:
pass
def encode_text(self, prompts: List[str], **kwargs
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
pass
def get_variance(self, timestep: torch.Tensor, prev_timestep: torch.Tensor) -> torch.Tensor:
pass
def get_alpha_prod_t_prev(self, prev_timestep: torch.Tensor) -> torch.Tensor:
pass
def get_noise_shape(self, x0: torch.Tensor, num_steps: int) -> Tuple[int, ...]:
variance_noise_shape = (num_steps,
self.model.unet.config.in_channels,
x0.shape[-2],
x0.shape[-1])
return variance_noise_shape
def sample_xts_from_x0(self, x0: torch.Tensor, num_inference_steps: int = 50) -> torch.Tensor:
"""
Samples from P(x_1:T|x_0)
"""
alpha_bar = self.model.scheduler.alphas_cumprod
sqrt_one_minus_alpha_bar = (1-alpha_bar) ** 0.5
variance_noise_shape = self.get_noise_shape(x0, num_inference_steps + 1)
timesteps = self.model.scheduler.timesteps.to(self.device)
t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
xts = torch.zeros(variance_noise_shape).to(x0.device)
xts[0] = x0
for t in reversed(timesteps):
idx = num_inference_steps - t_to_idx[int(t)]
xts[idx] = x0 * (alpha_bar[t] ** 0.5) + torch.randn_like(x0) * sqrt_one_minus_alpha_bar[t]
return xts
def get_zs_from_xts(self, xt: torch.Tensor, xtm1: torch.Tensor, noise_pred: torch.Tensor,
t: torch.Tensor, eta: float = 0, numerical_fix: bool = True, **kwargs
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
# pred of x0
alpha_bar = self.model.scheduler.alphas_cumprod
if self.model.scheduler.config.prediction_type == 'epsilon':
pred_original_sample = (xt - (1 - alpha_bar[t]) ** 0.5 * noise_pred) / alpha_bar[t] ** 0.5
elif self.model.scheduler.config.prediction_type == 'v_prediction':
pred_original_sample = (alpha_bar[t] ** 0.5) * xt - ((1 - alpha_bar[t]) ** 0.5) * noise_pred
# direction to xt
prev_timestep = t - self.model.scheduler.config.num_train_timesteps // \
self.model.scheduler.num_inference_steps
alpha_prod_t_prev = self.get_alpha_prod_t_prev(prev_timestep)
variance = self.get_variance(t, prev_timestep)
if self.model.scheduler.config.prediction_type == 'epsilon':
radom_noise_pred = noise_pred
elif self.model.scheduler.config.prediction_type == 'v_prediction':
radom_noise_pred = (alpha_bar[t] ** 0.5) * noise_pred + ((1 - alpha_bar[t]) ** 0.5) * xt
pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * radom_noise_pred
mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
z = (xtm1 - mu_xt) / (eta * variance ** 0.5)
# correction to avoid error accumulation
if numerical_fix:
xtm1 = mu_xt + (eta * variance ** 0.5)*z
return z, xtm1, None
def reverse_step_with_custom_noise(self, model_output: torch.Tensor, timestep: torch.Tensor, sample: torch.Tensor,
variance_noise: Optional[torch.Tensor] = None, eta: float = 0, **kwargs
) -> torch.Tensor:
# 1. get previous step value (=t-1)
prev_timestep = timestep - self.model.scheduler.config.num_train_timesteps // \
self.model.scheduler.num_inference_steps
# 2. compute alphas, betas
alpha_prod_t = self.model.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = self.get_alpha_prod_t_prev(prev_timestep)
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.model.scheduler.config.prediction_type == 'epsilon':
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
elif self.model.scheduler.config.prediction_type == 'v_prediction':
pred_original_sample = (alpha_prod_t ** 0.5) * sample - (beta_prod_t ** 0.5) * model_output
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
# variance = self.scheduler._get_variance(timestep, prev_timestep)
variance = self.get_variance(timestep, prev_timestep)
# std_dev_t = eta * variance ** (0.5)
# Take care of asymetric reverse process (asyrp)
if self.model.scheduler.config.prediction_type == 'epsilon':
model_output_direction = model_output
elif self.model.scheduler.config.prediction_type == 'v_prediction':
model_output_direction = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
# pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output_direction
pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * model_output_direction
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
# 8. Add noice if eta > 0
if eta > 0:
if variance_noise is None:
variance_noise = torch.randn(model_output.shape, device=self.device)
sigma_z = eta * variance ** (0.5) * variance_noise
prev_sample = prev_sample + sigma_z
return prev_sample
def unet_forward(self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
class_labels: Optional[torch.Tensor] = None,
timestep_cond: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
mid_block_additional_residual: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
replace_h_space: Optional[torch.Tensor] = None,
replace_skip_conns: Optional[Dict[int, torch.Tensor]] = None,
return_dict: bool = True,
zero_out_resconns: Optional[Union[int, List]] = None) -> Tuple:
pass
class AudioLDM2Wrapper(PipelineWrapper):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
if self.double_precision:
self.model = AudioLDM2Pipeline.from_pretrained(self.model_id, torch_dtype=torch.float64, token=self.token
).to(self.device)
else:
try:
self.model = AudioLDM2Pipeline.from_pretrained(self.model_id, local_files_only=True, token=self.token
).to(self.device)
except FileNotFoundError:
self.model = AudioLDM2Pipeline.from_pretrained(self.model_id, local_files_only=False, token=self.token
).to(self.device)
def load_scheduler(self) -> None:
self.model.scheduler = DDIMScheduler.from_pretrained(self.model_id, subfolder="scheduler")
def get_fn_STFT(self) -> torch.nn.Module:
from audioldm.audio import TacotronSTFT
return TacotronSTFT(
filter_length=1024,
hop_length=160,
win_length=1024,
n_mel_channels=64,
sampling_rate=16000,
mel_fmin=0,
mel_fmax=8000,
)
def vae_encode(self, x: torch.Tensor) -> torch.Tensor:
# self.model.vae.disable_tiling()
if x.shape[2] % 4:
x = torch.nn.functional.pad(x, (0, 0, 4 - (x.shape[2] % 4), 0))
return (self.model.vae.encode(x).latent_dist.mode() * self.model.vae.config.scaling_factor).float()
# return (self.encode_no_tiling(x).latent_dist.mode() * self.model.vae.config.scaling_factor).float()
def vae_decode(self, x: torch.Tensor) -> torch.Tensor:
return self.model.vae.decode(1 / self.model.vae.config.scaling_factor * x).sample
def decode_to_mel(self, x: torch.Tensor) -> torch.Tensor:
if self.double_precision:
tmp = self.model.mel_spectrogram_to_waveform(x[:, 0].detach().double()).detach()
tmp = self.model.mel_spectrogram_to_waveform(x[:, 0].detach().float()).detach()
if len(tmp.shape) == 1:
tmp = tmp.unsqueeze(0)
return tmp
def encode_text(self, prompts: List[str], negative: bool = False,
save_compute: bool = False, cond_length: int = 0, **kwargs
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
tokenizers = [self.model.tokenizer, self.model.tokenizer_2]
text_encoders = [self.model.text_encoder, self.model.text_encoder_2]
prompt_embeds_list = []
attention_mask_list = []
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
text_inputs = tokenizer(
prompts,
padding="max_length" if (save_compute and negative) or isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast))
else True,
max_length=tokenizer.model_max_length
if (not save_compute) or ((not negative) or isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast, VitsTokenizer)))
else cond_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
attention_mask = text_inputs.attention_mask
untruncated_ids = tokenizer(prompts, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] \
and not torch.equal(text_input_ids, untruncated_ids):
removed_text = tokenizer.batch_decode(
untruncated_ids[:, tokenizer.model_max_length - 1: -1])
print(f"The following part of your input was truncated because {text_encoder.config.model_type} can "
f"only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids.to(self.device)
attention_mask = attention_mask.to(self.device)
with torch.no_grad():
if text_encoder.config.model_type == "clap":
prompt_embeds = text_encoder.get_text_features(
text_input_ids,
attention_mask=attention_mask,
)
# append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size)
prompt_embeds = prompt_embeds[:, None, :]
# make sure that we attend to this single hidden-state
attention_mask = attention_mask.new_ones((len(prompts), 1))
else:
prompt_embeds = text_encoder(
text_input_ids,
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
prompt_embeds_list.append(prompt_embeds)
attention_mask_list.append(attention_mask)
# print(f'prompt[0].shape: {prompt_embeds_list[0].shape}')
# print(f'prompt[1].shape: {prompt_embeds_list[1].shape}')
# print(f'attn[0].shape: {attention_mask_list[0].shape}')
# print(f'attn[1].shape: {attention_mask_list[1].shape}')
projection_output = self.model.projection_model(
hidden_states=prompt_embeds_list[0],
hidden_states_1=prompt_embeds_list[1],
attention_mask=attention_mask_list[0],
attention_mask_1=attention_mask_list[1],
)
projected_prompt_embeds = projection_output.hidden_states
projected_attention_mask = projection_output.attention_mask
generated_prompt_embeds = self.model.generate_language_model(
projected_prompt_embeds,
attention_mask=projected_attention_mask,
max_new_tokens=None,
)
prompt_embeds = prompt_embeds.to(dtype=self.model.text_encoder_2.dtype, device=self.device)
attention_mask = (
attention_mask.to(device=self.device)
if attention_mask is not None
else torch.ones(prompt_embeds.shape[:2], dtype=torch.long, device=self.device)
)
generated_prompt_embeds = generated_prompt_embeds.to(dtype=self.model.language_model.dtype, device=self.device)
return generated_prompt_embeds, prompt_embeds, attention_mask
def get_variance(self, timestep: torch.Tensor, prev_timestep: torch.Tensor) -> torch.Tensor:
alpha_prod_t = self.model.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = self.get_alpha_prod_t_prev(prev_timestep)
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
return variance
def get_alpha_prod_t_prev(self, prev_timestep: torch.Tensor) -> torch.Tensor:
return self.model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 \
else self.model.scheduler.final_alpha_cumprod
def unet_forward(self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
timestep_cond: Optional[torch.Tensor] = None,
class_labels: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
mid_block_additional_residual: Optional[torch.Tensor] = None,
replace_h_space: Optional[torch.Tensor] = None,
replace_skip_conns: Optional[Dict[int, torch.Tensor]] = None,
zero_out_resconns: Optional[Union[int, List]] = None) -> Tuple:
# Translation
encoder_hidden_states_1 = class_labels
class_labels = None
encoder_attention_mask_1 = encoder_attention_mask
encoder_attention_mask = None
# return self.model.unet(sample, timestep,
# encoder_hidden_states=generated_prompt_embeds,
# encoder_hidden_states_1=encoder_hidden_states_1,
# encoder_attention_mask_1=encoder_attention_mask_1,
# ), None, None
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
default_overall_up_factor = 2 ** self.model.unet.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
# print("Forward upsample size to force interpolation output size.")
forward_upsample_size = True
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None:
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
if encoder_attention_mask_1 is not None:
encoder_attention_mask_1 = (1 - encoder_attention_mask_1.to(sample.dtype)) * -10000.0
encoder_attention_mask_1 = encoder_attention_mask_1.unsqueeze(1)
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.model.unet.time_proj(timesteps)
# `Timesteps` does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=sample.dtype)
emb = self.model.unet.time_embedding(t_emb, timestep_cond)
aug_emb = None
if self.model.unet.class_embedding is not None:
if class_labels is None:
raise ValueError("class_labels should be provided when num_class_embeds > 0")
if self.model.unet.config.class_embed_type == "timestep":
class_labels = self.model.unet.time_proj(class_labels)
# `Timesteps` does not contain any weights and will always return f32 tensors
# there might be better ways to encapsulate this.
class_labels = class_labels.to(dtype=sample.dtype)
class_emb = self.model.unet.class_embedding(class_labels).to(dtype=sample.dtype)
if self.model.unet.config.class_embeddings_concat:
emb = torch.cat([emb, class_emb], dim=-1)
else:
emb = emb + class_emb
emb = emb + aug_emb if aug_emb is not None else emb
if self.model.unet.time_embed_act is not None:
emb = self.model.unet.time_embed_act(emb)
# 2. pre-process
sample = self.model.unet.conv_in(sample)
# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.model.unet.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
encoder_attention_mask=encoder_attention_mask,
encoder_hidden_states_1=encoder_hidden_states_1,
encoder_attention_mask_1=encoder_attention_mask_1,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
# 4. mid
if self.model.unet.mid_block is not None:
sample = self.model.unet.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
encoder_attention_mask=encoder_attention_mask,
encoder_hidden_states_1=encoder_hidden_states_1,
encoder_attention_mask_1=encoder_attention_mask_1,
)
if replace_h_space is None:
h_space = sample.clone()
else:
h_space = replace_h_space
sample = replace_h_space.clone()
if mid_block_additional_residual is not None:
sample = sample + mid_block_additional_residual
extracted_res_conns = {}
# 5. up
for i, upsample_block in enumerate(self.model.unet.up_blocks):
is_final_block = i == len(self.model.unet.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
if replace_skip_conns is not None and replace_skip_conns.get(i):
res_samples = replace_skip_conns.get(i)
if zero_out_resconns is not None:
if (type(zero_out_resconns) is int and i >= (zero_out_resconns - 1)) or \
type(zero_out_resconns) is list and i in zero_out_resconns:
res_samples = [torch.zeros_like(x) for x in res_samples]
# down_block_res_samples = [torch.zeros_like(x) for x in down_block_res_samples]
extracted_res_conns[i] = res_samples
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
upsample_size=upsample_size,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
encoder_hidden_states_1=encoder_hidden_states_1,
encoder_attention_mask_1=encoder_attention_mask_1,
)
else:
sample = upsample_block(
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
)
# 6. post-process
if self.model.unet.conv_norm_out:
sample = self.model.unet.conv_norm_out(sample)
sample = self.model.unet.conv_act(sample)
sample = self.model.unet.conv_out(sample)
if not return_dict:
return (sample,)
return UNet2DConditionOutput(sample=sample), h_space, extracted_res_conns
class StableAudWrapper(PipelineWrapper):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
try:
self.model = StableAudioPipeline.from_pretrained(self.model_id, token=self.token, local_files_only=True
).to(self.device)
except FileNotFoundError:
self.model = StableAudioPipeline.from_pretrained(self.model_id, token=self.token, local_files_only=False
).to(self.device)
self.model.transformer.eval()
self.model.vae.eval()
if self.double_precision:
self.model = self.model.to(torch.float64)
def load_scheduler(self) -> None:
self.model.scheduler = CosineDPMSolverMultistepScheduler.from_pretrained(
self.model_id, subfolder="scheduler", token=self.token)
def encode_text(self, prompts: List[str], negative: bool = False, **kwargs) -> Tuple[torch.Tensor, None, torch.Tensor]:
text_inputs = self.model.tokenizer(
prompts,
padding="max_length",
max_length=self.model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(self.device)
attention_mask = text_inputs.attention_mask.to(self.device)
self.model.text_encoder.eval()
with torch.no_grad():
prompt_embeds = self.model.text_encoder(text_input_ids, attention_mask=attention_mask)[0]
if negative and attention_mask is not None: # set the masked tokens to the null embed
prompt_embeds = torch.where(attention_mask.to(torch.bool).unsqueeze(2), prompt_embeds, 0.0)
prompt_embeds = self.model.projection_model(text_hidden_states=prompt_embeds).text_hidden_states
if attention_mask is None:
raise gr.Error("Shouldn't reach here. Please raise an issue if you do.")
"""prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
if attention_mask is not None and negative_attention_mask is None:
negative_attention_mask = torch.ones_like(attention_mask)
elif attention_mask is None and negative_attention_mask is not None:
attention_mask = torch.ones_like(negative_attention_mask)"""
if prompts == [""]: # empty
return torch.zeros_like(prompt_embeds, device=prompt_embeds.device), None, None
prompt_embeds = prompt_embeds * attention_mask.unsqueeze(-1).to(prompt_embeds.dtype)
prompt_embeds = prompt_embeds * attention_mask.unsqueeze(-1).to(prompt_embeds.dtype)
return prompt_embeds, None, attention_mask
def get_fn_STFT(self) -> torch.nn.Module:
from audioldm.audio import TacotronSTFT
return TacotronSTFT(
filter_length=1024,
hop_length=160,
win_length=1024,
n_mel_channels=64,
sampling_rate=44100,
mel_fmin=0,
mel_fmax=22050,
)
def vae_encode(self, x: torch.Tensor) -> torch.Tensor:
x = x.unsqueeze(0)
audio_vae_length = int(self.model.transformer.config.sample_size * self.model.vae.hop_length)
audio_shape = (1, self.model.vae.config.audio_channels, audio_vae_length)
# check num_channels
if x.shape[1] == 1 and self.model.vae.config.audio_channels == 2:
x = x.repeat(1, 2, 1)
audio_length = x.shape[-1]
audio = x.new_zeros(audio_shape)
audio[:, :, : min(audio_length, audio_vae_length)] = x[:, :, :audio_vae_length]
encoded_audio = self.model.vae.encode(audio.to(self.device)).latent_dist
encoded_audio = encoded_audio.sample()
return encoded_audio
def vae_decode(self, x: torch.Tensor) -> torch.Tensor:
torch.cuda.empty_cache()
# return self.model.vae.decode(1 / self.model.vae.config.scaling_factor * x).sample
aud = self.model.vae.decode(x).sample
return aud[:, :, self.waveform_start:self.waveform_end]
def setup_extra_inputs(self, x: torch.Tensor, init_timestep: torch.Tensor,
extra_info: Optional[Any] = None,
audio_start_in_s: float = 0, audio_end_in_s: Optional[float] = None,
save_compute: bool = False) -> None:
max_audio_length_in_s = self.model.transformer.config.sample_size * self.model.vae.hop_length / \
self.model.vae.config.sampling_rate
if audio_end_in_s is None:
audio_end_in_s = max_audio_length_in_s
if audio_end_in_s - audio_start_in_s > max_audio_length_in_s:
raise ValueError(
f"The total audio length requested ({audio_end_in_s-audio_start_in_s}s) is longer "
f"than the model maximum possible length ({max_audio_length_in_s}). "
f"Make sure that 'audio_end_in_s-audio_start_in_s<={max_audio_length_in_s}'."
)
self.waveform_start = int(audio_start_in_s * self.model.vae.config.sampling_rate)
self.waveform_end = int(audio_end_in_s * self.model.vae.config.sampling_rate)
self.seconds_start_hidden_states, self.seconds_end_hidden_states = self.model.encode_duration(
audio_start_in_s, audio_end_in_s, self.device, False, 1)
if save_compute:
self.seconds_start_hidden_states = torch.cat([self.seconds_start_hidden_states, self.seconds_start_hidden_states], dim=0)
self.seconds_end_hidden_states = torch.cat([self.seconds_end_hidden_states, self.seconds_end_hidden_states], dim=0)
self.audio_duration_embeds = torch.cat([self.seconds_start_hidden_states,
self.seconds_end_hidden_states], dim=2)
# 7. Prepare rotary positional embedding
self.rotary_embedding = get_1d_rotary_pos_embed(
self.model.rotary_embed_dim,
x.shape[2] + self.audio_duration_embeds.shape[1],
use_real=True,
repeat_interleave_real=False,
)
self.model.scheduler._init_step_index(init_timestep)
# fix lower_order_nums for the reverse step - Option 1: only start from first order
# self.model.scheduler.lower_order_nums = 0
# self.model.scheduler.model_outputs = [None] * self.model.scheduler.config.solver_order
# fix lower_order_nums for the reverse step - Option 2: start from the correct order with history
t_to_idx = {float(v): k for k, v in enumerate(self.model.scheduler.timesteps)}
idx = len(self.model.scheduler.timesteps) - t_to_idx[float(init_timestep)] - 1
self.model.scheduler.model_outputs = [None, extra_info[idx] if extra_info is not None else None]
self.model.scheduler.lower_order_nums = min(self.model.scheduler.step_index,
self.model.scheduler.config.solver_order)
# if rand check:
# x *= self.model.scheduler.init_noise_sigma
# return x
def sample_xts_from_x0(self, x0: torch.Tensor, num_inference_steps: int = 50) -> torch.Tensor:
"""
Samples from P(x_1:T|x_0)
"""
sigmas = self.model.scheduler.sigmas
shapes = self.get_noise_shape(x0, num_inference_steps + 1)
xts = torch.zeros(shapes).to(x0.device)
xts[0] = x0
timesteps = self.model.scheduler.timesteps.to(self.device)
t_to_idx = {float(v): k for k, v in enumerate(timesteps)}
for t in reversed(timesteps):
# idx = t_to_idx[int(t)]
idx = num_inference_steps - t_to_idx[float(t)]
n = torch.randn_like(x0)
xts[idx] = x0 + n * sigmas[t_to_idx[float(t)]]
return xts
def get_zs_from_xts(self, xt: torch.Tensor, xtm1: torch.Tensor, data_pred: torch.Tensor,
t: torch.Tensor, numerical_fix: bool = True, first_order: bool = False, **kwargs
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
# pred of x0
sigmas = self.model.scheduler.sigmas
timesteps = self.model.scheduler.timesteps
solver_order = self.model.scheduler.config.solver_order
if self.model.scheduler.step_index is None:
self.model.scheduler._init_step_index(t)
curr_step_index = self.model.scheduler.step_index
# Improve numerical stability for small number of steps
lower_order_final = (curr_step_index == len(timesteps) - 1) and (
self.model.scheduler.config.euler_at_final
or (self.model.scheduler.config.lower_order_final and len(timesteps) < 15)
or self.model.scheduler.config.final_sigmas_type == "zero")
lower_order_second = ((curr_step_index == len(timesteps) - 2) and
self.model.scheduler.config.lower_order_final and len(timesteps) < 15)
data_pred = self.model.scheduler.convert_model_output(data_pred, sample=xt)
for i in range(solver_order - 1):
self.model.scheduler.model_outputs[i] = self.model.scheduler.model_outputs[i + 1]
self.model.scheduler.model_outputs[-1] = data_pred
# instead of brownian noise, here we calculate the noise ourselves
if (curr_step_index == len(timesteps) - 1) and self.model.scheduler.config.final_sigmas_type == "zero":
z = torch.zeros_like(xt)
elif first_order or solver_order == 1 or self.model.scheduler.lower_order_nums < 1 or lower_order_final:
sigma_t, sigma_s = sigmas[curr_step_index + 1], sigmas[curr_step_index]
h = torch.log(sigma_s) - torch.log(sigma_t)
z = (xtm1 - (sigma_t / sigma_s * torch.exp(-h)) * xt - (1 - torch.exp(-2.0 * h)) * data_pred) \
/ (sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)))
elif solver_order == 2 or self.model.scheduler.lower_order_nums < 2 or lower_order_second:
sigma_t = sigmas[curr_step_index + 1]
sigma_s0 = sigmas[curr_step_index]
sigma_s1 = sigmas[curr_step_index - 1]
m0, m1 = self.model.scheduler.model_outputs[-1], self.model.scheduler.model_outputs[-2]
h, h_0 = torch.log(sigma_s0) - torch.log(sigma_t), torch.log(sigma_s1) - torch.log(sigma_s0)
r0 = h_0 / h
D0, D1 = m0, (1.0 / r0) * (m0 - m1)
# sde-dpmsolver++
z = (xtm1 - (sigma_t / sigma_s0 * torch.exp(-h)) * xt
- (1 - torch.exp(-2.0 * h)) * D0
- 0.5 * (1 - torch.exp(-2.0 * h)) * D1) \
/ (sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)))
# correction to avoid error accumulation
if numerical_fix:
if first_order or solver_order == 1 or self.model.scheduler.lower_order_nums < 1 or lower_order_final:
xtm1 = self.model.scheduler.dpm_solver_first_order_update(data_pred, sample=xt, noise=z)
elif solver_order == 2 or self.model.scheduler.lower_order_nums < 2 or lower_order_second:
xtm1 = self.model.scheduler.multistep_dpm_solver_second_order_update(
self.model.scheduler.model_outputs, sample=xt, noise=z)
# If not perfect recon - maybe TODO fix self.model.scheduler.model_outputs as well?
if self.model.scheduler.lower_order_nums < solver_order:
self.model.scheduler.lower_order_nums += 1
# upon completion increase step index by one
self.model.scheduler._step_index += 1
return z, xtm1, self.model.scheduler.model_outputs[-2]
def get_sr(self) -> int:
return self.model.vae.config.sampling_rate
def get_noise_shape(self, x0: torch.Tensor, num_steps: int) -> Tuple[int, int, int]:
variance_noise_shape = (num_steps,
self.model.transformer.config.in_channels,
int(self.model.transformer.config.sample_size))
return variance_noise_shape
def reverse_step_with_custom_noise(self, model_output: torch.Tensor, timestep: torch.Tensor, sample: torch.Tensor,
variance_noise: Optional[torch.Tensor] = None,
first_order: bool = False, **kwargs
) -> torch.Tensor:
if self.model.scheduler.step_index is None:
self.model.scheduler._init_step_index(timestep)
# Improve numerical stability for small number of steps
lower_order_final = (self.model.scheduler.step_index == len(self.model.scheduler.timesteps) - 1) and (
self.model.scheduler.config.euler_at_final
or (self.model.scheduler.config.lower_order_final and len(self.model.scheduler.timesteps) < 15)
or self.model.scheduler.config.final_sigmas_type == "zero"
)
lower_order_second = (
(self.model.scheduler.step_index == len(self.model.scheduler.timesteps) - 2) and
self.model.scheduler.config.lower_order_final and len(self.model.scheduler.timesteps) < 15
)
model_output = self.model.scheduler.convert_model_output(model_output, sample=sample)
for i in range(self.model.scheduler.config.solver_order - 1):
self.model.scheduler.model_outputs[i] = self.model.scheduler.model_outputs[i + 1]
self.model.scheduler.model_outputs[-1] = model_output
if variance_noise is None:
if self.model.scheduler.noise_sampler is None:
self.model.scheduler.noise_sampler = BrownianTreeNoiseSampler(
model_output, sigma_min=self.model.scheduler.config.sigma_min,
sigma_max=self.model.scheduler.config.sigma_max, seed=None)
variance_noise = self.model.scheduler.noise_sampler(
self.model.scheduler.sigmas[self.model.scheduler.step_index],
self.model.scheduler.sigmas[self.model.scheduler.step_index + 1]).to(model_output.device)
if first_order or self.model.scheduler.config.solver_order == 1 or \
self.model.scheduler.lower_order_nums < 1 or lower_order_final:
prev_sample = self.model.scheduler.dpm_solver_first_order_update(
model_output, sample=sample, noise=variance_noise)
elif self.model.scheduler.config.solver_order == 2 or \
self.model.scheduler.lower_order_nums < 2 or lower_order_second:
prev_sample = self.model.scheduler.multistep_dpm_solver_second_order_update(
self.model.scheduler.model_outputs, sample=sample, noise=variance_noise)
if self.model.scheduler.lower_order_nums < self.model.scheduler.config.solver_order:
self.model.scheduler.lower_order_nums += 1
# upon completion increase step index by one
self.model.scheduler._step_index += 1
return prev_sample
def unet_forward(self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
encoder_attention_mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
**kwargs) -> Tuple:
# Create text_audio_duration_embeds and audio_duration_embeds
embeds = torch.cat([encoder_hidden_states, self.seconds_start_hidden_states, self.seconds_end_hidden_states],
dim=1)
if encoder_attention_mask is None:
# handle the batched case
if embeds.shape[0] > 1:
embeds[0] = torch.zeros_like(embeds[0], device=embeds.device)
else:
embeds = torch.zeros_like(embeds, device=embeds.device)
noise_pred = self.model.transformer(sample,
timestep.unsqueeze(0),
encoder_hidden_states=embeds,
global_hidden_states=self.audio_duration_embeds,
rotary_embedding=self.rotary_embedding)
if not return_dict:
return (noise_pred.sample,)
return noise_pred, None, None
def load_model(model_id: str, device: torch.device,
double_precision: bool = False, token: Optional[str] = None) -> PipelineWrapper:
if 'audioldm2' in model_id:
ldm_stable = AudioLDM2Wrapper(model_id=model_id, device=device, double_precision=double_precision, token=token)
elif 'stable-audio' in model_id:
ldm_stable = StableAudWrapper(model_id=model_id, device=device, double_precision=double_precision, token=token)
ldm_stable.load_scheduler()
torch.cuda.empty_cache()
return ldm_stable
|